• 제목/요약/키워드: Low LO-Power

검색결과 152건 처리시간 0.033초

Design and Fabrication of Low LO Power V-band CPW Mixer Module

  • Dan An;Lee, Bok-Hyung;Chae, Yeon-Sik;Park, Hyun-Chang;Park, Hyung-Moo;Chun, Young-Hoon;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.1133-1136
    • /
    • 2002
  • We designed and fabricated a low local oscillation (LO) power V-band CPW mixer module using a CPW-to-waveguide transition technology for the application of millimeter-wave wireless communication systems. The mixer was designed using a unique gate mixing architecture to achieve simultaneously a low LO input power, a high conversion gain, and good LO-RF isolation characteristics. The fabricated mixer exhibited a high conversion gain of 2 dB at a low LO power of 0 dBm. For data transmission of the 60 ㎓ wireless LNA systems, we fabricated a CPW-to-waveguide converter module of WR-15 type and mounted the fabricated mixer in the converter module. The fabricated V-band mixer exhibited a higher conversion gain and a lower LO input power than other reported V-band mixers.

  • PDF

Performance Analysis of LoRa(Long Range) according to the Distances in Indoor and Outdoor Spaces (실내·외 공간에서 거리에 따른 LoRa(Long Range) 성능 분석)

  • Lim, Junyeong;Lee, Jaemin;Kim, Donghyun;Kim, Jongdeok
    • Journal of KIISE
    • /
    • 제44권7호
    • /
    • pp.733-741
    • /
    • 2017
  • LPWAN(Low Power Wide Area Network) technology is M2M (Machine to Machine) networking technology for the Internet of Things. The technology is designed to support low-power, long-distance and low-speed communications that are typical of LoRaWAN(Long Range Wide Area Network). To exchange inter-object information using a LoRaWAN, the link performances for various environments must be known. however, active performance analysis research that is based on an empirical environment is nonexistent. Therefore, this paper empirically evaluates the performance of the LoRa (Long Range) link, a physical communication technology of the LoRaWAN for various variables that may affect the link quality in indoor and outdoor environments. To achieve this, a physical performance monitoring system was designed and implemented. A communication experiment environment was subsequently constructed based on the indoor and outdoor conditions. The SNR(Signal to Noise Ratio), RSSI(Received Signal Strength Indication), and the PDR(Packet Delivery Ratio) were evaluated.

Miniaturized DBS Downconverter MMIC Showing a Low Noise and Low Power Dissipation Characteristic (저잡음ㆍ저소비전력 특성을 가지는 위성방송 수신용 초소형 다운컨버터 MMIC)

  • Yun, Young
    • Journal of Navigation and Port Research
    • /
    • 제27권4호
    • /
    • pp.443-447
    • /
    • 2003
  • In this work. using 0.2 GaAs modulation doped FET(MODFET), a high performance DBS downconverter MMIC was developed for direct broadcasting satellite (DBS) application. Without LNA, the downconverter MMIC showed a very low noise of 4.8 dB, which is lower by 3 dB than conventional ones. A low LO power of -10 dBm was required for the normal DBS operation of the downconverter MMIC. which reduced the power consumption via a removal of LO amplifier on MMIC. It required only a low power consumption of 175 mW, which is lower than 70 percent of conventional ones. The LO leakage power at IF output was suppressed to a lower level than 30 dBm, which removes a bulky LO rejection filter on a board. The fabricated chip, which include a mixer, If amplifiers. LO rejection filter, and active balun, exhibited a small size of $0.84{\times}0.9\textrm{mm}^2$.

The low conversion loss and low LO power V-band MIMIC Up-mixer (낮은 LO 입력 및 변환손실 특성을 갖는 V-band MIMIC Up-mixer)

  • Lee Sang Jin;Ko Du Hyun;Jin Jin Man;An Dan;Lee Mun Kyo;Cho Chang Shik;Lim Byeong Ok;Chae Yeon Sik;Park Hyung Moo;Rhee Jin Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제41권12호
    • /
    • pp.103-108
    • /
    • 2004
  • In this paper, we present MIMIC(Millimeter-wave Monolithic Integrated Circuit) up-mixer with low conversion loss and low LO power for the V-band transmitter applications. The up-mixer was successfully integrated by using 0.1 ㎛ GaAs pseudomorphic HEMTs(PHEMTs) and coplanar waveguide (CPW) structures. The circuit is designed to operate at RF frequencies of 60.4 GHz, IF frequencies of 2.4 GHz, and LO frequencies of 58 GHz. The fabricated MIMIC up-mixer size is 2.3 mmxl.6 mm. The measured results show that the low conversion loss of 1.25 dB when input signal is -10.25 dBm at LO power of 5.4 dBm. The LO to RF isolation is 13.2 dB at 58 GHz. The fabricated V-band up-mixer represents lower LO input power and conversion loss characteristics than previous reported millimeter-wave up-mixers.

Development of Science IoT Network (ScienceLoRa) using Low Power Wide Area Technologies (저전력 장거리 통신기술을 이용한 과학기술 IoT 네트워크 (ScienceLoRa) 개발)

  • Kim, Joobum;Seok, Woojin;Kwak, Jaiseung;Kim, Kiwook
    • KNOM Review
    • /
    • 제22권2호
    • /
    • pp.29-38
    • /
    • 2019
  • The rapid growth of IoT (Internet of Things) owing to the advancement and spread of technologies such as wireless networks, communication modules, sensors, smart terminals, etc. enables the development of new services in diverse public and private sectors. In particular, research on IoT technology and its applications has increased in the field of science. To establish an IoT infrastructure in this field, KREONET launched the wireless IoT network, called ScienceLoRa, based on low power wide area network (LPWAN). ScienceLoRa aims to collect a variety of data from sensors and utilize and analyze the collected data for research in a variety of scientific fields. In this article, the authors present the concept, current status, applications and future plans of ScienceLoRa.

LoRa for LPWA Network: Overview and its Performance Enhancement Technologies (저전력광대역 네트워크를 위한 LoRa: 개요 및 성능향상 기술)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제14권2호
    • /
    • pp.283-288
    • /
    • 2019
  • LPWA (Low Power Wide Area) networks have been considered as one of the technologies which can be implemented in IoT (Internet of Things) applications by providing less power and longer communication range compared with existing wireless technologies. In this paper, we investigate LoRa which is one of representative technologies for LPWA networks. First, we present general properties and several technologies of LPWA networks. Then, the technical specification, properties, and pros/cons of LoRa are studied. Finally, we discuss analysis of LoRa's performance and its ehancement technologies by focusing on physical layer and MAC (Medium Access Control) layer.

Embedded System Design with COS LoRa technology (COS LoRa 기반의 임베디드 시스템 설계)

  • Hong, Seonhack;Cho, Kyungsoon;Yoon, Jinseob
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • 제14권3호
    • /
    • pp.29-38
    • /
    • 2018
  • It is the approach of embedded system design that analyzes COS(Cut Out Switch) failure in the power distribution and an instantaneous breakdown of power distribution supply could cause the weakness of industrial competence and therefore we need to feed the stable power distribution with developing the technology of open-source embedded system. In this paper, we apply the LoRa technology which is the Internet of Things(IoT) protocol for low data rate, low power, low cost and long range sensor applications. We designed the hardware and software architecture setup and experimented the embedded system with network architecture and COS monitoring system including accelerometer for detecting the failure of distribution line and sensing the failure of its fuse holder by recognizing the variation and collision and afterwards sending the information to a gateway. With experimenting we designed the embedded platform for sensing the variation and collision according to the COS failure, monitoring its fuse holder status and transferring the information of states with LoRa technology.

Link Performance Analysis of LoRa for Real-time Information Gathering in Maritime Conditions (실시간 해상 정보 수집을 위한 LoRa 링크 성능분석)

  • Shin, Jaeho;Lim, Junyeong;Kim, Donghyun;Kim, Jongdeok
    • Journal of KIISE
    • /
    • 제45권3호
    • /
    • pp.303-310
    • /
    • 2018
  • LoRaWAN(Long Range Wide Area Network) is a standard for low-power, long-range, low-speed communication as announced in the LoRa Alliance. LoRaWAN addresses the physical layer and medium access control layer and the technology used in the physical layer is referred to as LoRa. LoRa can be used for remote monitoring and remote control in maritime conditions. However, unlike land, marine environment is not only difficult to construct an infrastructure for service provision, but also difficult to analyze LoRa performance in maritime. In this study, we construct an infrastructure using cloud platform and analyze LoRa link performance in maritime conditions.

Low-power 6LoWPAN Protocol Design (저 전력 6LoWPAN 프로토콜 설계)

  • Kim, Chang-Hoon;Kim, Il-Hyu;Cha, Jung-Woo;Nam, In-Gil;Lee, Chae-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • 제12권4호
    • /
    • pp.274-280
    • /
    • 2011
  • Due to their rapid growth and new paradigm applications, wireless sensor networks(WSNs) are morphing into low power personal area networks(LoWPANs), which are envisioned to grow radically. The fragmentation and reassembly of IP data packet is one of the most important function in the 6LoWPAN based communication between Internet and wireless sensor network. However, since the 6LoWPAN data unit size is 102 byte for IPv6 MTU size is 1200 byte, it increases the number of fragmentation and reassembly. In order to reduce the number of fragmentation and reassembly, this paper presents a new scheme that can be applicable to 6LoWPAN. When a fragmented packet header is constructed, we can have more space for data. This is because we use 8-bits routing table ill instead of 16-bits or 54-bits MAC address to decide the destination node. Analysis shows that our design has roughly 7% or 22% less transmission number of fragmented packets, depending on MAC address size(16-bits or 54-bits), compared with the previously proposed scheme in RFC4944. The reduced fragmented packet transmission means a low power consumption since the packet transmission is the very high power function in wireless sensor networks. Therefore the presented fragmented transmission scheme is well suited for low-power wireless sensor networks.

Factory environmental management system based on MQTT using LoRa (LoRa망을 이용한 MQTT기반의 공장 환경 관리 시스템)

  • Ko, Jae-wook;Kim, Hye-Jeong;Lee, Bo-Kyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제18권6호
    • /
    • pp.83-90
    • /
    • 2018
  • LoRa (Long Range) is a long-distance, low-power communication technology. Broader range of communication than NFC technology allows communication without having to install multiple APs and reduces the cost of initial infrastructure deployment. MQTT (Message, Queuing, Telemetry, Transport) protocol is also low power and lightweight protocols. It can increase module persistence and reduce maintenance costs when used with LoRa. In this paper, we developed a system for compiling various environmental information in a factory using LoRa and MQTT. Environmental sensor data from long distances can be monitored by the management system and the facilities in each workshop can be controlled. Performance tests have also shown that the use of LoRa and MQTT is effective in terms of long-distance and power consumption.