• 제목/요약/키워드: Low Heat Mixture

검색결과 220건 처리시간 0.031초

A Study on the Prediction of Hydrogen Vehicle by the Thermodynamic Properties

  • Han, Sung Bin
    • 에너지공학
    • /
    • 제24권2호
    • /
    • pp.79-83
    • /
    • 2015
  • Hydrogen has long been recognized as a fuel having some unique and highly desirable properties, for application as a fuel in engines. Hydrogen has some remarkably high values of the key properties for transport processes, such as kinematic viscosity, thermal conductivity and diffusion coefficient, in comparison to those of the other fuels. Such differences together with its extremely low density and low luminosity help to give hydrogen its unique diffusive and heat transfer characteristics. The thermodynamic and heat transfer characteristics of hydrogen tend to produce high compression temperatures that contribute to improvements in engine efficiency and lean mixture operation.

3점 휨시험에의한 저발열콘크리트의 파괴거동에 곤한 실험적 연구 (Experimental Study on Fracture Behavior of Low-Heat Concrete, by Three-Point Bent Test)

  • 조병완;박승국
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.199-204
    • /
    • 1998
  • To analysis the failure character of Low-Heat concrete which is used to prevent the thermal crack caused by hydration heat, static loading test was performed by this test method, "Determination of the Fracture Energy of Motar and Concrete by Means of Three-Point Band Tests on Notched Beam" (suggested by RILEM 50-FMC Committe). This study compared and analysised the fracture energy of Mode I (opening mode), the most general pattern in the view of water-cemente ratio(W/C), compressive strength and age of Ordinary Portland Concrete and Low-Heat Concrete under the same mixture. The test results show that the case of Ordinary Portland Concrete and Low-Heat Concrete, low Water-Cemente ratio(W/C) cause the increase of fracture energy, and high failure-strength decrease failure-deflection, and the fracture energy of Low-Heat Concrete is similar to Ordinary Portland Concrete as the age increase. increase.

  • PDF

열펌프의 난방운전시 외기온이 압측기의 냉매거동에 미치는 영향 (Effect of Outdoor Temperature on the Refrigerant Behavior in the Compressor of a Heat Pump Operating at Heating Mode)

  • 이재효;김병균;이건우
    • 설비공학논문집
    • /
    • 제16권5호
    • /
    • pp.452-458
    • /
    • 2004
  • The major cause of compressor failure is the decrease of oil viscosity due to floodback. In most previous researches on the compressor reliability, the relationship between oil circulation rate and performance or oil viscosity has been studied. Another research topic is flow visualization by using a sight glass on the bottom of a compressor sump area and accumulator. Both oil film thickness and oil level through the sight glass should be assessed for compressor reliability if the oil content of the mixture is small and low viscosity raise poor lubrication of pump bearing. In this study, the compressor reliability was assessed by measuring the viscosity of the mixture and calculating oil film thickness. The analysis of the relationship between bottom shell super heat and oil film thickness at heating operation was peformed. It is concluded that bottom shell superheat does not perfectly stand for the mixture's behavior for a low ambient heating operation and oil film thickness can give more detailed and direct criteria for compressor reliability.

저등급 열원의 변환을 위한 칼리나 사이클과 유기 랭킨 사이클의 엑서지 성능의 비교 해석 (Comparative Exergy Analysis of Kalina and Organic Rankine Cycles for Conversion of Low-Grade Heat Source)

  • 김경훈;정영관;고형종
    • 한국수소및신에너지학회논문집
    • /
    • 제31권1호
    • /
    • pp.105-111
    • /
    • 2020
  • The organic Rankine cycle (ORC) and the Kalina cycle system (KCS) are being considered as the most feasible and promising ways to recover the low-grade finite heat sources. This paper presents a comparative exergetical performance analysis for ORC and Kalina cycle using ammonia-water mixture as the working fluid for the recovery of low-grade heat. Effects of the system parameters such as working fluid selection, turbine inlet pressure, and mass fraction of ammonia on the exergetical performance are parametrically investigated. KCS gives lower lower exergy destruction ratio at evaporator and higher second-law efficiency than ORC. The maximum exergy efficiency of ORC is higher than KCS.

초임계조건에서 $CO_2$-PEC9 혼합물의 물성예측을 통한 냉각 열전달특성 연구 (Gas cooling heat transfer coefficient for $CO_2$-PEC9 mixture under supercritical condition)

  • 윤린
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.821-826
    • /
    • 2009
  • Due to environmental concerns $CO_2$ has been reintroduced as a potential candidate to replace HFCs in refrigeration systems. Oils are always required in a vapor-compression cycle, and thus actual working fluid in the system is $CO_2$-oil mixtures even though the oil concentrations are low at the heat exchangers and the expansion device. The cooling heat transfer coefficients for $CO_2$-oil mixtures under supercritical condition are required to designing of the gas cooler in the $CO_2$ refrigeration system properly. In the present study, the gas cooling heat transfer coefficients for $CO_2$-PEC9 was estimated by using the Gnileinski correlation, and the Kim and Ghajar model through the previous prediction models for the thermo-physical properties of $CO_2$-oil mixture. The Gnileinski correlation was used when the oil wt.% in the mixture is less than 1.0, and for the higher oil concentration the Kim and Ghajar model was applied. The estimated results agree with the experimental results conducted by the Dang et al.

  • PDF

HFC 순수냉매 및 3성분 혼합냉매의 수평관내 응축열전달 (Condensation Heat Transfer for Pure HFC Refrigerants and a Ternary Refrigerant Mixture Inside a Horizontal Tube)

  • 오종택;비원 영치
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.233-240
    • /
    • 2000
  • An experimental study of condensation heat transfer was performed for pure refrigerants HFC32, HFCI25, and HFC134a, and a ternary refrigerant mixture of HFC32/125/134a (23/25/52wt%). The heat transfer coefficients were measured inside a horizontal smooth tube 5.8 mm I.D. and 8.0 m long. The refrigerant temperature at inlet was 40 $^{\circ}C$, and the mass flux was varied from 150 to 400 $kg/m^2s$. As for the pure refrigerants, the heat transfer coefficient of HFC32/125/l34a decreased as the quality decreased. In addition, the heat transfer coefficient of HFC32/l25/134a was about 20 % lower than HFC 134a at a low mass flux but showed no reduction at a high mass flux. The heat transfer coefficient of ternary refrigerant mixtures was 30% lower on the average than that of the pure refrigerant.

낮은 핀관에서 대체냉매의 풀비등 열전달계수 (Pool boiling heat transfer coefficients of alternative refrigerants on low fin tubes)

  • 송길홍;이준강;정동수;김종보
    • 설비공학논문집
    • /
    • 제10권4호
    • /
    • pp.411-422
    • /
    • 1998
  • In this study, experiments were carried out to provide nucleate pool boiling heat transfer data for a plain tube and 4 different low fin tubes employing 2 refrigerant mixtures of R410A, R407C, and 12 pure fluids. Low fin tubes were machined on a 19.05mm nominal outside diameter copper block according to the manufacturer's low fin tube specifications. Cartridge heaters were used to generate uniform heat flux on the tubes. For all refrigerants, heat flux varied from 10㎾/$\m^2$ to 80㎾/$\m^2$. It is found that heat transfer coefficients(HTCs) of high vapor pressure refrigerants are usually higher than those of low pressure fluids. On the other hand, the fin effect was more prominent with low pressure refrigerants than with high pressure ones. Optimum fin density as well as the increase in heat transfer coefficient with the increase in fin density were found to be strongly fluid dependent. HTCs of Rl23, a low pressure alternative refrigerant, were similar to those of Rll while HTCs of R134a, an intermediate pressure alternative refrigerant, were roughly 20% higher than those of Rl2. Finally, HTCs of R32, R125, R143a, and R410A were all higher than those of R22 by 30~50%.

  • PDF

석탄 가스화 용융 슬래그를 혼합잔골재로 활용한 매스 콘크리트 수화열 저감 (Reduction of Hydration Heat of Mass Concrete Using Coal Gasification Slag as Mixed Fine Aggregates)

  • 한민철;김종;최일경;한준희
    • 한국건축시공학회지
    • /
    • 제21권6호
    • /
    • pp.551-562
    • /
    • 2021
  • 본 연구에서는 IGCC에서 발생하는 부산물인 CGS를 콘크리트용 혼합 잔골재로써 효율적으로 활용하는 방안을 제시하기 위하여 플라이애시 치환 매스 콘크리트의 수화열 저감 효과를 확보하기 위한 방안으로 CGS 기반 혼합 잔골재와 플라이애시 치환에 따른 수화열 저감 특성 분석 및 해석을 실시 하고자 한다. 따라서, 매스 콘크리트의 수화열 저감을 위하여 활용되는 플라이애시 기반 저발열 결합재에 CGS를 잔골재로 치환하여 최적의 조합으로 FA 30% 및 CGS를 잔골재로 50% 치환할 경우 저발열 결합재 FA를 단일 치환한 경우보다 복합상승 효과에 따라 수화열 저감 성능이 더 크게 나타났다. 따라서 산업부산물인 CGS 골재 조합에 플라이애시를 복합 치환한 분체-골재조합 재료 시스템은 매스 콘크리트 수화열 저감 공법의 효율적인 대안으로서 활용이 기대된다.

미사일 외면의 열 방호 단열재 연구 (A Study on the External Insulation of Missile Surface)

  • 박병열;류문삼
    • 한국추진공학회지
    • /
    • 제10권3호
    • /
    • pp.53-59
    • /
    • 2006
  • 본 연구에서는 미사일의 외면에 단열재의 재료로 사용되는 재료들의 종류 및 배합비 별로 적외선 램프 시험 장비를 이용하여 단열 성능 평가와 기계적/열적 특성치를 측정하였다. 실험 결과 다공성 충전제 함유량이 증가할수록 단열성능은 증진되나 기계적 특성은 저하하였다. 다공성 충전제 종류 중에서 Epoxy/Phenolic Microballoon이 가장 우수한 기계적 특성과 낮은 열전도도 값을 보여 주었다. Epoxy/cork 단열재는 낮은 기계적 특성치와 높은 열전도도 간을 보여주었으나, 적외선 램프 실험에서는 가장 우수한 단열 성능을 가졌다.

분체계 재료조합 및 석탄 가스화 용융 슬래그를 잔골재로 활용한 매스 콘크리트 수화열 저감 (Reducing Hydration Heat of Mass Concrete by Applying Combination of Powdered Materials and CGS as Fine Aggregate)

  • 박상원;한준희;한민철
    • 한국건축시공학회지
    • /
    • 제24권2호
    • /
    • pp.169-180
    • /
    • 2024
  • 본 연구는 분체계 재료조합 시멘트 및 CGS 잔골재 조합에 따른 콘크리트의 단열온도상승 시험결과를 통해 최적의 조합 비율을 도출하고, 이를 토대로 모의부재 시험 및 수화열 해석을 통하여 매스 콘크리트 구조물에서의 수화열 저감 성능에 대한 현장 적용성을 분석하였다. 분석결과 TBC+CGS 50%조합에서 콘크리트 중앙부와 표면부의 온도차이가 감소하며, 최고 온도 도달시간이 지연되어 시간경과에 따른 표면부 인장강도 증가로 온도응력에 따른 온도균열 발생을 저감시킬 수 있을 것으로 판단된다.