• Title/Summary/Keyword: Low Gravity

Search Result 570, Processing Time 0.028 seconds

The Current Status of Recycling Process and Problems of Recycling according to the Packaging Waste of Korea (국내 포장 폐기물에 따른 재질별 재활용 공정 현황 및 재활용 문제점)

  • Ko, Euisuk;Shim, Woncheol;Lee, Hakrae;Kang, Wookgeon;Shin, Jihyeon;Kwon, Ohcheol;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.2
    • /
    • pp.65-71
    • /
    • 2018
  • Paper packs, glass bottles, metal cans, and plastic materials are classified according to packaging material recycling groups that are Extended Producer Responsibility (EPR). In the case of waste paper pack, the compressed cartons are dissociated to separate polyethylene films and other foreign substance, and then these are washed, pulverized and dried to produce toilet paper. Glass bottle for recycling is provided to the bottle manufacturers after the process of collecting the waste glass bottle, removing the foreign substance, sorting by color, crushing, raw materializing process. Waste glass recycling technology of Korea is largely manual, except for removal of metal components and low specific gravity materials. Metal can is classified into iron and aluminum cans through an automatic sorting machine, compressed, and reproduced as iron and aluminum through a blast furnace. In the case of composite plastic material, the selected compressed product is crushed and then recycled through melt molding and refined products are produced through solid fuel manufacturing steps through emulsification and compression molding through pyrolysis. In the recycling process of paper packs, glass bottles, metal cans, and plastic materials, the influx of recycled materials and other substances interferes with the recycling process and increases the recycling cost and time. Therefore, the government needs to improve the legal system which is necessary to use materials and structure that are easy to recycle from the design stage of products or packaging materials.

Rice Growth and Yield at Different Cultural Methods under No-tillage Condition (벼 무경운 재배시 재배양식에 따른 생육 및 수량)

  • 박홍규;김상수;백남현;석순종;박건호;이선용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.4
    • /
    • pp.420-428
    • /
    • 1996
  • This study was conducted to investigate the response of growth and yield of rice under five different cultural methods, machine transplanting(MTNT), puddled drill seeding (PDSNT), drill seeding on soil surface (DSNT) , broadcasting on soil surface (BSNT) under no-tillage paddy condition and conventional machine transplanting(MTT) in Jeonbuk series(siltyloam soil) from 1993 to 1995. Soil hardness was higher in no-tillage soil and increased with highly difference between tillaged and no-tillage soil with deeper soil depth. Bulk density was heavier in no-tillage soil and porosity was higher in tilled soil than that of the control. The rate of effective tiller was higher in MTT, following MTNT, PDSNT, DSNT and BSNT. Weed occurrence was more serious in no-tillage soil, than that of tillaged soil. The rate of lower internode length was lower in DSNT and BSNT and was similar with MTT in PDSNT and MTNT. Height of center gravity in terms of lodging tolerance was lower in direct seeding than in machine transplanting. Depth of buried culm was shorter in no-tillage soil, especially in DSNT and BSNT. Total amount of root was higher in MTT, following MTNT, PDSNT, BSNT and BSNT and the distribution rate of root in shallower soil layer was higher in no-tillage soil, especially in BSNT and DSNT. Field lodging occured highly in BSNT, following DSNA, PDSNT and MTNT with high lodging scale in DSNT and BSNT. Panicle number per unit land square meter was the highest in MTT and the least in BSNT. Ripened grain ratio was low in BSNT and DSNT due to heavy lodging. Yield of milled rice was 93% in PDSNT, 87% in DSNT, 81% in BSNT and 96% in MTNT, compared with 534kg /10a in MTT.

  • PDF

Changes of soil characteristics, rice growth and lodging traits by different fertilization and drainage system in paddy soil (논 토양에서 배수 및 시비조건에 따른 토양특성, 생육 및 도복 관련 형질의 변화)

  • Jeon, Weon-Tai;Park, Chang-Young;Park, Ki-Do;Cho, Young-Son;Lee, Jeom-Sig;Lee, Dong-Chang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.3
    • /
    • pp.153-161
    • /
    • 2002
  • The installation of subsurface drainage equipment is required for generalized use of paddy field and to improve soil productivity. The internal drainage of paddy field has improved root condition from the increasing of oxygen supply and removing noxious elements. This experiment was carried out to determine the effects of fertilization and drainage system on soil characteristic, growth and lodging trait of rice in paddy soil. A subsurface drainage system was installed a depth of 0.8m. Three fertilizer treatments were applied : 1) Conventional fertilized plot, 2) Controlled-release fertilized plot, 3) No-fertilized plot. In conventional plot, 110 kg N (as urea 46%), 45 kg P (as fused phosphate 20%) and 57 kg K (as potassium chloride 60%) per hectare fertilizers were applied. Controlled-release fertilizer was applied by 70% of N compared to the conventional plot. During the rice cropping, the water depth decrease was two times higher in subsurface drainage(SD) plot than non-drained(ND) plot. After harvesting of rice, the bulk density of sub-soil(10-20cm depth) was lower in SD plot than ND plot. After the experiment, the surface soil pH was high at SD plot but sub-soil was high at ND plot. Organic matter content was higher in all soil layer for SD plot than fro ND plot. Available $P_2O_5$ was not different between SD and ND plot for surface soil, but was high for SD plot for sub soil. The $NH_4{^+}-N$ content of soil, shoot dry matter, total nitrogen and $K_2O$ of rice plant were greater after panicle formation stage in SD plot. Total nitrogen content, $P_2O_5$ and $K_2O$ of rice root were high in SD plot after heading. Though the gravity center and 3rd internode length were greater, pulling force of rice root was higher in SD plot than ND plot. Rice yield in SD plot were low at conventional and controlled-release fertilized plot because of the greater field lodging, but yield in SD plot was high at no-fertilized plot. This study indicates that the fertilization level should be decrease on subsurface drainage system for rice cropping.

A Study on the Manufacture of Hard-board Utilized Amino-resins as the Sizing Materials for the Strength Increase (아미노수지(樹脂)를 보강제(補强劑)로 이용(利用)한 경질섬유판(硬質纖維板) 제조(製造)에 관(關)한 연구(硏究))

  • Lee, Phil Woo;Lee, Hwa Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.24 no.1
    • /
    • pp.45-52
    • /
    • 1974
  • This study was carried out to examine the subsitution possibility into water soluble amino resins instead of phenolic resin as a sizing material for the strength increase on the wet forming hardboard. The properties of hardboard, manufactured with amino-resins based urea, melamine, formaline, and methanol which were low priced domestic products, were examined in comparison with those of hardboard treated with phenolic resin. In this study by the results and discussions, it may be summarized as follows: 1. Amino-resins are able to be substituted for the phenolic resin as a good sizing material for strength increase in the manufacture of wet forming hardboard. Under the considerations of economic advantages and properties of hardboard, modified urea-melamine resin was given a best results. 2. The specific gravities of hardboard that were treated with phenolic resin was equal to that treated with modified amino type resin, and in case of urea-melamine resin, the specific gravity value were lowest among them. 3. The results of moisture contents were satisfied the standard which calls for 13 percent or below. There were no differences in moisture contents between hardboards, treated with melamine resin and modified urea-melamine resin but phenolic resin. The moisture contents of hardboard treated with phenolic resin was shown the lowest. 4. The water absorption of hardboard treated with phenolic resin was greater than those treated with amino resins, and to satisfy the standard of water resistance, the treatment of 2 percent paraffin wax emulsion was needed in this case. There were no differences in water absorptions between hardboards, treated with melamine resin and modified urea-melamine resin. To satisfy the standard of water resistance in this case the treatment of 1 percent paraffin wax emulsion was shown good results. 5. The differences among the flexural strength in using tested three adhesives were significant. The flexural strength were shown the signification by order of melamine resin, modified urea-melamine resin, and phenolic resin. In all cases to satisfy the standard of flexural strength, the treatment of 3 percent sizing materials for strength increase was needed.

  • PDF

Studies on Engneering Properties of Coal Ash Obtained as Industrial Wastes (산업폐기물(産業廢棄物)로 발생(發生)되는 석탄회(石炭灰)의 토질력학적(土質力學的) 특성(特性)에 관한 연구(硏究))

  • Chun, Byung Sik;Koh, Yong Il;Oh, Min Yeoul;Kwon, Hyung Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.115-123
    • /
    • 1990
  • The purpose of this study was to examine the uses of coal ash as a type of construction material. The methods of examination were chemical anlysis, soil laboratory test and the soil vibration test. Materials used were coal ash obtained as a by-product from 5 thermal power plants in Yongdong, Yongwol, Sochon(anthracite coal) and in Samchonpo and Honam (bituminous coal). Over 70% of the coal ash consisted of silica and alumina. The fly ash grain size showed a uniform distribution from fine-sand to silt, and that of the bottom ash showed from sand to gravel. The specific gravity and density of the coal ash were low. The long term strength increased gradually due to the self-setting property resulting from pozzolanic activity. The shear strength was higher than that of general soil. Cohesion and optimum moisture content of anthracite coal ash were higher than bituminous coal ash, whereas the maximum dry density was higher in bituminous coal ash. The coal ash dynamic Young's modulous curve range was similar to that of general soil. Of the results from the soil vibration test by car-running, the size relative acceleration level in the ash pond was higher than that of natural ground, but the damping ratio was lower than that of natural ground near the ash pond. The coal ash has more advantageous engineering properties than general soil with particles of the same size. For example, the California Bearing Ratio of the bottom ash at both Yongdong and Yongwol was 77~137%. Therefore we expect that if further study is done, coal ash can be used as a construction material when reclaiming seashore, construction embankments, road construction, making right-weight aggregate, or as a general construction material.

  • PDF

Functional Magnetizing Treatment of Natural Quartz and Volcanic Lava Scoria (내추럴 퀄쯔와 화산암재 스코리아의 기능성 마그네타이징 처리)

  • 소대화;소현준;배두안;김정희
    • Journal of the Speleological Society of Korea
    • /
    • no.63
    • /
    • pp.1-8
    • /
    • 2004
  • The non-magnetic materials with non-conductive showing high structure dispersity were developed on the base of natural quartz and lava-scoria which was collected from Je-ju island in Korea, and treated by methane-chemical technology those were obtained novel properties of magnetization through the analyzing. Depending on the processing conditions and subsequent applications the materials produced by strong methane-chemical reaction (MCR) in alcohol solution showed concurrently magnetic, dielectric and electrical properties. The obtained magnetic-electrical powders classified by aggregate complex of their features as segnetomagnetics, containing a dielectric material as a carrying nucleus, particularly the quartz on that surface one or more layers of different compounds were synthesized having thickness up to 10~50 nm and showing magnetic, electrical and other properties. It was confirmed in magnetizing process that powders of quartz and lava-scoria produced by MCR were better oil adsorbent as of oleophilic and floating matter on water surface although their specific gravities are comparably more than 1 in quartz or less than unity, as that of water, in lava-scoira. Therefore, it will be Possible and very useful to remove low density and light gravity oil spillage in difficult recovery from sea and inland water contamination spread on water surface, by marine accident and ship sinking accident occurring frequently in recent years, by way of magnetic adsorbent conveyer system in continuous, if it could be built up the mass Production system of water-floating magnetizable oleophilic adsorbent materials with use of iow cost and good Qualify lava-scoria spread on volcano district in Je-ju island. And, there will also be urgent advent of necessity with strong possibility to develop useful applications of various magnetic functional materials include oleophilic adsorbent for removal of sea oil-contaminants and maritime pollutants, and other kinds of various utilities in industrial applications and practical uses of novel functional materials in the fields of environments and health care applications with in deep expectation.

Removal of As(III) in Contaminated Groundwater Using Iron and Manganese Oxide-Coated Materials (철/망간 산화물 피복제를 이용한 오염지하수에서의 As(III)제거)

  • Kim Ju-Yong;Choi Yoon-Hyeong;Kim Kyoung-Woong;Ahn Joo Sung;Kim Dong Wook
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.571-577
    • /
    • 2005
  • Permeable reactive barrier using iron oxide coated sand is one of effective technologies for As(V) contaminated groundwater. However, this method is restricted to As(III), because As(III) species tends to be more weakly bound to adsorbent. In order to overcome the limitation of iron oxide coated sand application to As(III) contaminated groundwater, manganese oxide materials as promoter of As(III) removal were combined to the conventional technology in this study. For combined use of iron oxide coated sand and manganese oxide coated sand, two kinds of removal methods, sequential removal method and simultaneous removal method, were introduced. Both methods showed similar removal efficiency over $85\%$ for 6 hrs. However, the sequential method converted the As contaminated water to acid state (pH 4.5), on the contrary, the simultaneous method maintained neutral state (pH 6.0). Therefore, simultaneous As removal method was ascertained as a suitable treatment technology of As contaminated water. Moreover, for more effective As(III) remediation technique, polypropylene textile which has the characteristics of high surface area, low specific gravity and flexibility was applied as alternative material of sand. The combined use of coated polypropylenes by simultaneous method showed much more prominent and rapid remediation efficiency over $99\%$ after 6 hrs; besides, it has practical advantages in replacement or disposal of adsorbent for simple conventional removal device.

Skin Improvement Effects and Development of Liposome Capsule Technology Using Centella Asiatica Extract Powder (센텔라아시아티카정량추출물의 리포좀 캡슐기술 개발과 피부개선효과)

  • Kim, Seong Jang;Ju, Yeon Jeong;Kim, In-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1285-1297
    • /
    • 2020
  • In this study, we report the results of a study on the clinical evaluation of wrinkle improvement by developing a method for liposome of high-purity Centella asiatica extract used in pharmaceuticals and cosmetics, and a cream using the same. In order to make Centellasome-10EX stabilizing centella asiatica extract in liposome lamella vesicle, it could be completed using 5% hydrogenated lecithin and 2% sucrose distearate. The appearance of Centellasome-10EX was a creamy form of low viscosity, the color was pale yellow, and the odor had the inherent odor of the raw material. The pH was about 6.12, the specific gravity was 1.09, and the acid value was about 0.35. The content of the main constituents of centella asiatica extract contained in the liposome vesicle contains 10,800 ppm of asiatic acid, 10,900 ppm of asiaticoside, 6,000 ppm of madecasic acid, and 1,600 ppm of madecassoside, and long-term storage. There was no discoloration even at the time, and it was found that the main component remained stable thermodynamically. To mechanistically analyze the structure of the liposome vesicle of Centellasome-10EX, as a result of observation with a transmission electron microscope (Cryo-TEM), the multilayer vesicles are formed and filled with moisture, and there are 10 to 60 multilayers around it. It was confirmed that the liposome lamella vesicle was formed. As a clinical trial (in-vivo) test, the moisturizing effect of centellasome cream after application for 5 weeks was 28.3%, which was significantly increased compared to placebo. The skin elasticity effect was 13.6%, which significantly increased the moisturizing power than the placebo. The effect of improving fine wrinkles around the eyes was improved by 23.52% compared to placebo cream. Through the results of this study, it was possible to study the formulation and manufacturing method for encapsulation and stabilization of the developed Centellasome-10EX in the liposome vesicle. It is expected that the results obtained through clinical research on the wrinkle improvement effect of the cream using this can be widely used to study skin science in the cosmetic industry and to develop high-quality cosmetics with high efficacy.

Origin of Clay Minerals of Core RS14-GC2 in the Continental Slope to the East of the Pennell-Iselin Bank in the Ross Sea, Antarctica (남극 로스해 펜넬-이젤린 퇴 동쪽 대륙사면의 코어 RS14-GC2의 점토광물의 기원지 연구)

  • Ha, Sangbeom;Khim, Boo-Keun;Cho, Hyen Goo;Colizza, Ester
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • A gravity core (RS14-C2) was collected at site RS14-C2 in the continental slope to the east of Pennell-Isellin Bank of the Ross Sea (Antarctica) during PNRA XXIX (Rosslope II Project) Expedition. In order to trace the sediment source, magnetic susceptibility (MS), sand fraction, and clay mineral compositions were analyzed, and AMS $^{14}C$ ages were dated. Core sediments consist mostly of hemipelagic sandy clay or silty clay including ice-rafted debris (IRD). AMS $^{14}C$ age of core-top indicates the modern and Holocene sediments. Based on AMS $^{14}C$ dating, sediment color, MS and sand fraction, core sediments are divided into interglacial and glacial intervals. The interglacial brown sediments are characterized by low MS and sand fraction, whereas the glacial gray sediments are characterized by high MS and sand fraction. Among clay mineral compositions of core sediments, illite is highest (61.8~76.7%), and chlorite (15.7~21.3%), kaolinite (3.6~15.4%), and smectite (0.9~5.1%) are in decreasing order, and these compositions are also divided into the interglacial and glacial/deglacial intervals. During the glacial period, the high content of illite and chlorite indicate sediment supply from the bedrocks of Transantarctic Mountains under the Ross Ice Sheet. In contrast, because of decreasing supply of illite and chlorite by the glacial retreat, smectite and kaolinite contents increased relatively during the interglacial period. During the interglacial period, smectite may be transported additionally by the northeastward flowing surface current from the coast of Victoria Land in the western Ross Sea. Kaolinite may be also supplied to the continental slope by the Antarctic Slope Current from the kaolin-rich metasedimentary rock outcropped on the Edward VII Peninsula.

Efficiency Test for Surface Protecting Agents for the Chemical Resistance of Concrete Structures Using Sulfur Polymers (Sulfur Polymer를 사용한 콘크리트 구조물용 내화학성 표면보호재의 성능 평가)

  • Lee, Byung-Jae;Lee, Eue-Sung;Chung, Woo-Jung;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.1-8
    • /
    • 2014
  • Structures requiring chemical resistance are usually coated with surface protecting agents, but the cost for maintenance and re-construction is incurred due to the low durability. Therefore, in this study, sulfur was polymerized and the performance was examined so that it could be used as the concrete surface protecting agents for structures requiring chemical resistance. The evaluation results indicated that for the spray of the sulfur polymer surface coating agents, the application of the gravity type was appropriate; and for the number of coating times, about 3 cycle spray gave the best results. For the surface condition of the concrete to be coated with the surface protecting agents, outstanding quality was obtained above room temperature ($20{\sim}30^{\circ}C$), and the bond strength increased as the temperature increased. The evaluation results of the strength characteristics depending on the filler content of the surface protecting agents indicated that about 20~40% filler mixing contributed to the strength improvement as it reduced the shrinkage of the sulfur polymer. Also, the mixing of silica showed larger increase in the bond strength than the mixing of fly ash, and the most outstanding bond strength characteristics could be obtained by the mixing of both silica and fly ash. In the case of the chemical resistance, the strength reduction was minimized and outstanding chemical resistance was obtained when the fly ash and silica were substituted by 20%, respectively. The performance evaluation of the chloride ion penetration indicated that for the specimens coated with the sulfur polymer surface protecting agents, the chloride ion penetration resistance increased by 29~48% compared to the specimen without the coating of the surface protecting agent. The examination of the coating condition of the surface protecting agents, compressive strength, bond strength, chemical resistance, and salt damage resistance indicated that in the range of this study, the optimal level was when the silica and fly ash were substituted by 20%, respectively, as the filler for the sulfur polymer.