• Title/Summary/Keyword: Low Frequency Instability

Search Result 133, Processing Time 0.022 seconds

Characteristics of Low-Frequency Combustion-driven Oscillation in a Surface Burner (표면연소기의 저주파 연소진동음의 특성)

  • 한희갑;이근희;권영필
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.991-997
    • /
    • 2000
  • The objective of this study is to examine the onset condition and the frequency characteristics of the low-frequency combustion oscillation in a surface burner. For this purpose, extensive parametric studies have been performed experimentally and the effects of size of each section, the equivalence ratio, and the entrance velocity on oscillatory behavior explored. The experimental results were discussed in comparison with the other combustors associated tilth the low-frequency combustion oscillation. The combustion mode is driven at high combustion rate by the lift of unstable flame near the lower limit of the combustible equivalence ratio. The oscillation frequency is dependent not on the burner geometry but on the equivalence ratio and the combustion load. Low-frequency combustion mode was formed to be divided into two different modes, named C1 and C2 respectively. Two modes occurred individually, simultaneously or transitionally according to the equivalence ratio and combustion load. The characteristics of low-frequency oscillation is different from each other depending on the type of combustors. The surface burner has also its own characteristics of low -frequency oscillation.

  • PDF

Hybrid Rocket Instability II (하이브리드 로켓 불안정성 II)

  • Lee, Jung-Pyo;Rhee, Sun-Jae;Kim, Young-Nam;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Gon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.86-90
    • /
    • 2012
  • In this paper, the combustion instabilities which may occur in the hybrid rocket were studied. The rocket combustor where the vortexes can be generated was designed, and the experiments were performed. The investigations about characteristics on the presence of the diaphragm, the length of the fuel, the diameter of the fuel port, the diameter of the diaphragm, the diameter of the nozzle throat, and the variation of the Ox massflow rate were conducted. The main resonant frequency of the combustion pressure is regarded by the Vortex shedding mode, and it is considered that the other resonant frequency of the pressure fluctuation is hybrid low frequency, or helmholtz mode.

  • PDF

Transient Analysis of Hybrid Rocket Combustion by the Zeldovich-Novozhilov Method

  • Lee, Changjin;Lee, Jae-Woo;Byun, Do-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1572-1582
    • /
    • 2003
  • Hybrid rocket combustion has a manifestation of stable response to the perturbations compared to solid propellant combustion. Recently, it has revealed that the low frequency combustion instability about 10 Hz was occurred mainly due to thermal inertia of solid fuel. In this paper, the combustion response function was theoretically derived by use of ZN (Zeldovich-Novozhilov) method. The result with HTPB/LOX combination showed a quite good agreement in response function with previous works and could predict the low frequency oscillations with a peak around 10 Hz which was observed experimentally. Also, it was found that the amplification region in the frequency domain is independent of the regression rate exponent n but showed the dependence of activation energy. Moreover, the response function has shown that the hybrid combustion system was stable due to negative heat release of solid fuel for vaporization, even though the addition of energetic ingredients such as AP and Al could lead to increase heat release at the fuel surface.

Investigation of wind-induced dynamic and aeroelastic effects on variable message signs

  • Meyer, Debbie;Chowdhury, Arindam Gan;Irwin, Peter
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.793-810
    • /
    • 2015
  • Tests were conducted at the Florida International University (FIU) Wall of Wind (WOW) to investigate the susceptibility of Variable Message Signs (VMS) to wind induced vibrations due to vortex shedding and galloping instability. Large scale VMS models were tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. Data was measured for the $0^{\circ}$ and $45^{\circ}$ horizontal wind approach directions and vertical attack angles ranging from $-4.5^{\circ}$ to $+4.5^{\circ}$. Analysis of the power spectrum of the fluctuating lift indicated that vertical vortex oscillations could be significant for VMS with a large depth ratio attached to a structure with a low natural frequency. Analysis of the galloping test data indicated that VMS with large depth ratios, greater than about 0.5, and low natural frequency could also be subject to galloping instability.

Characteristics of Plane Impinging Jets(2)- Cylinder-tone - (평면 충돌제트의 불안정특성(2)-원통음-)

  • Kwon, Young-Pil;Kim, Wook;Lee, Joo-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.105-110
    • /
    • 2004
  • The objective of this study is to obtain the instability characteristics of the plane jet impinging on circular cylinder associated with the cylinder-tone. It is found that the characteristics depends upon he ratio of the cylinder diameter to the nozzle width, D/h, and the jet velocity. When the ratio is oderate the cylinder-tone is similar to the edge-tone. With increase of the ratio, its characteristics ecomes similar to that of the plate-tone in which only the high-speed tone associated with turbulent et is generated. When D/h 〈1. the frequency range, especially the lower limit of frequency, is ignificantly influenced by the cylinder diameter. At around D/h = 1/2, while low speed tones are nduced with the antisymmetric mode of instability and affected by the vortex shedding from the ylinder, high-speed tones are generated, at first, with the symmetric mode of instability. and then, ith antisymmetric mode, as the jet velocity increases.

Analysis of the Threshold Voltage Instability of Bottom-Gated ZnO TFTs with Low-Frequency Noise Measurements (Low-Frequency Noise 측정을 통한 Bottom-Gated ZnO TFT의 문턱전압 불안정성 연구)

  • Jeong, Kwang-Seok;Kim, Young-Su;Park, Jeong-Gyu;Yang, Seung-Dong;Kim, Yu-Mi;Yun, Ho-Jin;Han, In-Shik;Lee, Hi-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.545-549
    • /
    • 2010
  • Low-frequency noise (1/f noise) has been measured in order to analyze the Vth instability of ZnO TFTs having two different active layer thicknesses of 40 nm and 80 nm. Under electrical stress, it was found that the TFTs with the active layer thickness of 80 nm shows smaller threshold voltage shift (${\Delta}V_{th}$) than those with thickness of 40 nm. However the ${\Delta}V_{th}$ is completely relaxed after the removal of DC stress. In order to investigate the cause of this threshold voltage instability, we accomplished the 1/f noise measurement and found that ZnO TFTs exposed the mobility fluctuation properties, in which the noise level increases as the gate bias rises and the normalized drain current noise level($S_{ID}/{I_D}^2$) of the active layer of thickness 80 nm is smaller than that of active layer thickness of thickness 40 nm. This result means that the 80 nm thickness TFTs have a smaller density of traps. This result correlated with the physical characteristics analysis performmed using XRD, which indicated that the grain size increases when the active layer thickness is made thicker. Consequently, the number of preexisting traps in the device increases with decreasing thickness of the active layer and are related closely to the $V_{th}$ instability under electrical stress.

Characteristics of thermoacoustic oscillation in ducted flame burner (관형 연소기의 열 음향학적 특성에 관한 실험적 연구)

  • 조상연;이수갑
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.985-991
    • /
    • 1997
  • Combustion instability is a common phenomenon in a ducted flame burner and is known as accompanying low frequency oscillation. This is due to the interaction between unsteady heat release rate and sound pressure field, that is, thermoacoustic feedback. In Rayleigh criterion, combustion instability is triggered when the heat addition is in phase with acoustic oscillation. A Rijke type burner with a pre-mixed flame is built for investigating the effect of Reynolds number and equivalence ratio on thermoacoustic oscillation. The results suggest that the frequency of max, oscillation is dependent on Reynolds number and equivalence ratio whereas its magnitude is not a strong function of these two parameters.

  • PDF

Simulation study on the nonlinear evolution of EMIC instability

  • Rha, Kicheol;Ryu, Chang-Mo;Yoon, Peter H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.119.2-119.2
    • /
    • 2012
  • Charged particle energization is an outstanding problem in space physics. This paper investigates the nonlinear dynamics of Alfve'n-cyclotron waves accompanying particle heating processes and the drift Alfv'en-cyclotron (or EMIC) instability associated with a current disruption event on 29 January 2008 observed with THEMIS satellite by means of a particle-in-cell simulation. The simulation shows that the drift Alfv'en-cyclotron instabilities are excited in two regimes, a relatively low frequency mode propagating in a quasi-perpendicular direction while the second high-frequency branch propagating in a predominantly parallel propagation direction, which is consistent with observation as well as earlier theories. It is shown that parametric decay processes lead to an inverse cascade of Alfv'en-cyclotron waves and the generation of ion-acoustic waves by decay instability. It is also shown that the nonlinear decay processes are accompanied by small perpendicular heating and parallel cooling of the protons, and a pronounced parallel heating of the electrons.

  • PDF

Study on Thermoelastic Instability of Automotive Disc Brakes (자동차용 디스크 브레이크의 열탄성 불안정성에 관한 연구)

  • Choi, Ji-Hoon;Kim, Do-Hyung;Lee, In
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.315-322
    • /
    • 2001
  • This paper is focused on the frictionally induced thermoelastic instability (TEI) in automotive disk brakes. This instability leads to the formation of localized high temperature contact regions known as hot spots. This article investigates the themoelastic instability in automotive disk brake systems consisting of a finite thickness layer (disk) and two half-planes (pads) using a perturbation method. The antisymmetric mode involves hot spots located alternately on two sides of the disk. As a result the circumferentially periodic hot spots produce rotor surface distortion and Induce low frequency vibration. Also the effects of system parameters on the critical speed for TEI are investigated.

  • PDF

Combustion Instability Modeling in a Hydrogen-Natural Gas Mixed Fuel Gas Turbine Combustor using a 3-Dimensional Finite Element Method Approach (3차원 유한요소해석 기법을 사용한 수소-천연가스 혼소 가스터빈 연소기에서의 연소불안정 해석)

  • Hong, Sumin;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.27 no.1
    • /
    • pp.36-41
    • /
    • 2022
  • In this study, the combustion instability characteristics according to the change in the hydrogen ratio in the fuel in the single nozzle system of the hydrogen-natural gas mixed gas turbine for power generation was analyzed using a three-dimensional finite element analysis-based Helmholtz solver. This combustor shows the instability characteristics in which mode transition occurs from a mode having a low amplitude near 70 Hz to a mode having a high amplitude of 250 Hz or higher as the hydrogen fraction in the fuel increases. The current modeling results are found to reasonably predict the main characteristics of the change in measured instability frequency and growth rate with the change in fuel composition.