• Title/Summary/Keyword: Low Fin Surface

Search Result 47, Processing Time 0.024 seconds

Heat Transfer Characteristics of Spray Cooling up to Critical Heat Flux on a Low-fin Enhanced Surface (Low-fin 촉진 표면에서 임계 열유속까지의 분무 냉각 열전달 특성)

  • Lee, Yohan;Kang, Dong-Gyu;Jung, Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.9
    • /
    • pp.522-528
    • /
    • 2013
  • Spray cooling is a technology of increasing interest for electronic cooling and other high heat flux applications. In this study, heat transfer coefficients (HTCs) and critical heat fluxes (CHFs) were measured on a smooth square flat copper heater of $9.53{\times}9.53$ mm at $36^{\circ}C$ in a pool, with a smooth flat surface, and 26 fpi. Low-fin surfaces were used to see the change in HTCs and CHFs according to the surface characteristics, and FC-72 was used as the working fluid. FC-72 fluid had a significant influence on the heat transfer characteristics of the spray over the cooling surface. HTCs were taken from 10 $kW/m^2$ to critical heat flux, for all surfaces. Test results with Low-fin showed that the CHFs of all the enhanced surface were greatly improved. It can be said that the surface form affects the heat transfer coefficient and critical heat flux.

An Experimental Study on Condensation Heat Transfer of Low-Finned Tubes (낮은 핀관 (low-fin tube)의 응축 열전달 성능에 관한 실험적 연구)

  • Kim, N.H.;Jung, I.K.;Kim, K.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.298-309
    • /
    • 1995
  • Low-fin tubes are widely used to enhance condensation heat transfer. In this study, condensation heat transfer experiment was conducted on the low-fin tube using R-11. Three different fin densities-787 fpm (fins per meter), 1102 fpm. 1378 fpm-were tested. The results show that low-fin tube enhances the condensation heat transfer considerablely. The enhancement increases as the fin density increases. It was also found that the fin shape and height have a significant effect on the condensation heat transfer coefficient. Slender or high fins showed a higher condensing heat transfer coefficient compared with fat, low fins. For the tube with 1378 fpm, however, excessive fin height decreased the condensing heat transfer coefficient. The reason may be attributed to the increasing condensate retention angle as the fin density increases. The experimental data are compared with existing prediction models. Results show that Webb's surface tension model predicted the data best (within ${\pm}20%$), which confirms that surface tension plays the major role in low-fin tube condensation.

  • PDF

Pool Boiling Heat Transfer Coefficients Up to Critical Heat flux on Low-fin and Turbo-B Surfaces (낮은 핀 표면과 Turbo-B 촉진 표면에서 임계 열유속까지의 풀 비등 열전달계수)

  • Lee, Yo-Han;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.3
    • /
    • pp.179-187
    • /
    • 2011
  • In this work, nucleate pool boiling heat transfer coefficients(HTCs) of 5 refrigerants of differing vapor pressure are measured on horizontal low fin and Turbo-B square surfaces of 9.53 mm length. Tested refrigerants are R32, R22, R134a, R152a and R245fa and HTCs are taken from 10 $kW/m^2$ to critical heat fluxes for all refrigerant at $7^{\circ}C$. Wall and fluid temperatures are measured directly by thermocouples located underneath the test surface and in the liquid pool. Test results show that Critical heat fluxes(CHFs) of all enhanced surfaces are greatly improved as compared to that of a plain surface in all tested refrigerants. CHFs of all refrigerants on the 26 fpi low fin surface are increased up to 240% as compared to that of the plain surface. HTCs on both low fin and Turbo-B surfaces increase with heat flux. After certain heat flux, however, they decrease. CHFs of the Turbo-B enhanced surface are lower than that of the 26 fpi low fin surface. This phenomenon is due to the difference in surface structure of the low fin and Turbo-B surface.

A Study on the Performance of the Condensation and the Boiling Heat Transfer of Low Fin Tubes Used in Cooling of the Cutting Oil (절삭유 냉각용 낮은 핀관의 응축 및 비등 열전달 성능에 관한 연구)

  • 이종선
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.68-78
    • /
    • 1999
  • Heat transfer performance is studied for boiling and condensation of R-11 on integral-fin tubes. Nine tubes with trapezoidal integral-fins having fin densities from 748 to 1654fpm and 10,30 grooves and finned tubes with caves of 0.55 and 0.64 mm height respectively are tested. in case of condensation CFC-11 condensates at saturation stat of 32$^{\circ}C$ on the outside surface cooled by inside cooling water flows. And in case of boiling the refrigerant evaporates at a saturation state of 1 bar on the outside tube surface and heat is supplied by hot water which circulates inside of the tube,. The tube having fin transfer coefficient concerns fin tubes with caves show higher valve than low fin tube having find density of 1299fpm and 30grooves. The overall heat transfer coefficient of fin tube with caves is about 5155 W/mK at 2.8m/s of water velocity, The value is abuot 2.7 times higher than plain tube and 1.3 times higher than low fin tube having fin density of 1299fpm and 30 grooves.

  • PDF

A Study on the Performance of the Condensation and the Boiling Heat Transfer of Low Fin Tubes Used in Cooling of the Cutting Oil (절삭유 냉각용 낮은 핀관의 응축 및 비등 열전달 성능에 관한 연구)

  • Jo, Dong Hyeon;Lee, Jong Seon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.65-65
    • /
    • 1999
  • Heat transfer performance is studied for boiling and condensation of R-11 on integral-fin tubes. Nine tubes with trapezoidal integral-fins having fin densities from 748 to 1654fpm and 10,30 grooves and finned tubes with caves of 0.55 and 0.64 mm height respectively are tested. in case of condensation CFC-11 condensates at saturation stat of 32℃ on the outside surface cooled by inside cooling water flows. And in case of boiling the refrigerant evaporates at a saturation state of 1 bar on the outside tube surface and heat is supplied by hot water which circulates inside of the tube,. The tube having fin transfer coefficient concerns fin tubes with caves show higher valve than low fin tube having find density of 1299fpm and 30grooves. The overall heat transfer coefficient of fin tube with caves is about 5155 W/mK at 2.8m/s of water velocity, The value is abuot 2.7 times higher than plain tube and 1.3 times higher than low fin tube having fin density of 1299fpm and 30 grooves.

A Study on the condensate Retention at Horizontal Integral-Fin tubes (낮은 핀을 가진 수평관의 응축액 억류에 관한 연구)

  • 한규일;조동현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.151-165
    • /
    • 1996
  • Relation between condensate retention and heat transfer performance is studied for condensation of CFC-11 on horizontal integral-fin tubes. Eight tubes with trapezoidally shaped integral fin density from 738fpm to 1654fpm and 10, 30 grooves are tested. The liquid retention angles are measured by the height gauge, and each tube is tested under static(non-condensing) condition (CFC-11, water) and under dynamic(condensing) condition (CFC-11). The analytical model predicts the amount of liquid retention on a horizontal integral-fin tubes within+10 percent over most of the data. Average retention angle increases as both surface tension-to-density ratio($\sigma/\rho$) and fin density(fpm) increase, The tube having a fin density of 1299~1654fpm has the best heat transfer performance. The amount of surface flooding must keep below of 40 percent for best heat transfer performance at condensation. The tube having low number of fin density must be used for fluids having high values of $\sigma/\rho$(water, (TEX)$NH_3$, ect.) and the tube having high number of fin density must be used for the fluid having low values of $\sigma/\rho$(R-11, R-22, etc.)

  • PDF

Wet Surface Performance Test of PF Heat Exchanger (PF열교환기의 습표면 성능시험)

  • Cho, J.P.;Kim, N.H.;Choi, K.K.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.314-320
    • /
    • 2000
  • In this study, the wet surface heat transfer coefficients and friction factors of PF heat exchangers are presented. Two sample with different fin pitch(1.25mm, 1.5mm) were tested. Tests were conducted in a open loop wind tunnel. The wet surface heat transfer coefficient was reduced following the procedure given in ARI 410-81. Results showed that the heat transfer coefficients of the heat exchanger with 1.5mm fin pitch were approximately the same as those with 1.25mm fin pitch, except at low reynolds number(Re<100), where the heat transfer coefficients of 1.5mm fin pitch were slighly higher than those with 1.25mm fin pitch. The friction factors of the 1.25mm fin pitch, however was 120 % to 160 % higher than those of the 1.5mm fin pitch. The wet surface heat transfer coefficients were lower than those of the dry surface. The wet surface friction factors, however, were higher than those of the dry surface.

  • PDF

Pool Boiling Heat Transfer Coefficients of Water Up to Critical Heat flux on Enhanced Surfaces (열전달 촉진 표면에서 임계 열유속까지의 물의 풀 비등 열전달계수)

  • Lee, Yo-Han;Gyu, Kang-Dong;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.3
    • /
    • pp.194-200
    • /
    • 2011
  • In this work, nucleate pool boiling heat transfer coefficients(HTCs) of pure water are measured on horizontal 26 fpi low fin, Turbo-B and Thermoexcel-E square surfaces of 9.53 mm length. HTCs are taken from 10 $kW/m^2$ to critical heat flux for all surfaces. Test results show that critical heat fluxes(CHFs) of all enhanced surfaces are greatly improved as compared to that of a plain surface. CHFs of water on the 26 fpi low fin surface, Thermoexcel-E surface, and Turbo-B are increased up to 320%, 275%, and 150% as compared to that of the plain surface, respectively. CHF of the Turbo-B enhanced surface is lower than that of the 26 fpi low fin surface due to the surface geometry. The heat transfer enhancement ratios of the Thermoexcel-E surface, low fin surface and Turbo-B enhanced surface are 1.6~2.9, 1.6~2.1, 1.4~1.7 respectively in the range of heat fluxes tested. Judging from these results, it can be said that these types of enhanced surfaces can be used in heat transfer applications at high heat fluxes.

A Study on the Performance of Heat Transfer of Low Fin Tubes Used in Cooling of the Cutting Oil of the Machine Tool (공작기계 절삭유 냉각용 낮은 핀관의 열전달 성능에 관한 연구)

  • 조동현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.125-133
    • /
    • 1998
  • Nine tubes with trapezoidal integral-fins having fin densities from 748 to 1654fpm and 10,30 grooves and finned tubes with caves of 0.55 and 0.64mm height respectively are tested. A plain tube having same diameter as the finned tubes is also tested for comparison. In case of condensation CFC-11 condensates at saturation state of 32$^{\circ}C$ on the outside surface cooled by inside cooling water flows. And in case of boiling the refrigerant evaporates at a saturation state of 1bar on the outside tube surface and heat is supplied by hot water which circulates inside of the tube. The tube having fin density of 1299fpm and 30grooves has the best condensation overall heat transfer coefficient. However, as far as boiling heat transfer coefficient concerns, fin tubes with cave show higher value than low fin tube having fin density of 1299fpm and 30 grooves.

  • PDF

A Study on the Heat Transfer Improvement of Integral-Fin Tubes by External Fin Effect (전조 나선핀 튜브의 외부핀 형상 변화에 의한 열전달 향상에 관한 연구)

  • Han, Gyu-Il;Jo, Dong-Hyeon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.1
    • /
    • pp.33-44
    • /
    • 1994
  • This work studies for boiling and condensation heat transfer performance of trapezoidally shaped integral-fin tubes having fin densities from 748fpm to 1654fpm. For comparison, tests are made using a plain tube having the same inside and outside diameter as that of the root of fins of finned tubes. Hahne's theoretical model and Webb's theoretical model are used to predict the R-11 boiling heat transfer coefficient and condensing heat transfer coefficient respectively for plain tube and all integral-fin tubes. Experiments are carried out using R-11 as working fluid. This work is limited to film-wise condensation and pool boiling on the outside surface of plain tube and 4 low integral-fin tubes. In case of condensation, the refrigerant condenses at saturation state of 32$^{\circ}C$ on the outside tube surface cooled by coolant and in case of boiling. the refrigerant evaporates at saturation state of 1bar on the outside tube surface. The amount of non-con-densable gases in the test loop is reduced to a negligible value by repeated purging. The actual boiling and condensing processes occur on the outside tube surfaces. Hence the nature of this surface geometry affects the heat transfer performances of condenser and evaporator in refrigerating system. The condensation heat transfer coefficient of integral-fin tube is enhanced by both extended tube surface area and surface tension. The ratio of the condensation heat transfer coefficients of finned to plain tubes is greater than that of surface area of finned to plain tubes, while ratio of the boiling heat transfer coefficient of finned to plain tubes shows reverse result. As a result, low integral-fin tube can be used in condenser more effectively than used in evaporator.

  • PDF