• Title/Summary/Keyword: Low Fibre Concentrate

Search Result 6, Processing Time 0.021 seconds

Performance of Suckling Rabbits Fed a Low Fibre Concentrate

  • Piccolo, Giovanni;Bovera, Fulvia;Meo, Carmelo Di;Gazaneo, Maria Pia;Nizza, Antonino
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1421-1424
    • /
    • 2005
  • The aim of this study was to evaluate the effect of two diets different in crude fibre content and ingredients on performance and on caecal characteristics of rabbits around weaning. Thirty litters from thirty New Zealand White does were divided at Day 18 in two groups fed, respectively, a low fibre concentrate (LFC, consisting mainly of soybean meal, delactated whey, barley) from Day 18-28 followed by a creep feed (CF, consisting mainly in alfalfa meal, barley and wheat bran) from Day 29-32, and a CF from Day 18-32. After weaning (32 days) both groups were fed the CF ad libitum for two weeks. During the pre-weaning period, mortality, milk intake and solid feed intake (from Day 20) were recorded daily, while the live weight of kits was recorded twice, at 18 and 32 days. At day 28, one rabbit/litter was slaughtered in order to obtain data on caecal content characteristics. After weaning, the rabbits were located in collective cages, feeding ad libitum CF; feed intake, live weight and mortality were recorded weekly for two weeks. During the preweaning period, there were no differences between the groups in milk and solid feed intake and, by consequence, in live weight at weaning; instead, the mortality was higher (12.5 vs 4.5%) for the group (A) that changed diet at 28 days. Group A showed also a higher caecal pH (6.12 vs. 5.72), propionate to butyrate ratio (0.73 vs. 0.46), ammonia content (9.3 vs. 7.1 mmol/l), but a lower total volatile fatty acid content (66.8 vs. 82.1 mmol/l) than B Group, probably due to the dried milk whey in the concentrate. After weaning, there were no significant differences between the two groups. The authors concluded that the use of a low fibre concentrate for suckling rabbits is not recommended.

Effects of Molasses at Different Levels in Concentrate Supplement on Milk Yield of Dairy Cows Grazing Setaria Grass (Setaria Sphacelata) Pasture in Fiji

  • Eroni, V. Tamani;Aregheore, E.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1455-1463
    • /
    • 2006
  • Effects of different levels of molasses in a concentrate supplement on milk yield of cows grazing Setaria grass pastures were investigated. Thirty Friesian cows, 6-7 years old with mean pre-experimental body weight of $428{\pm}6.5$ kg, in early stage of lactation were randomly allotted to five dietary treatments in a completely randomized design experiment that lasted for 126 days. Experimental dietary treatments were forage alone and forage/concentrate mixtures with molasses included at 0, 5, 10 or 15% levels designated as $T_1$, $T_2$, $T_3$, $T_4$ and $T_5$, respectively. The parameters studied were voluntary dry matter (DM) intake, average daily live weight change (LWC), milk yield, body condition score (BCS) and apparent nutrient digestibility coefficients. The DM and energy contents of Setaria grass were low compared to the concentrate diets. Fibre fractions-NDF, ADF, ADL, hemicellulose and cellulose; and gross energy were higher in concentrate mixtures than in the forage. Total DM intake (forage+concentrate mixtures) was significantly higher (p<0.001) in cows on the concentrate mixtures. LWC was not significantly different (p>0.05) between the cows. Average milk yields were significantly different (p<0.05) between cows. Fat corrected milk (FCM) was similar among cows in the treatments. BCS was better (p<0.001) in cows on concentrate mixtures. Digestibilities of DM, CP, NDF, ADF, ADL, OM, and energy were significantly higher (p<0.001) in cows on $T_2$, $T_3$, $T_4$ and $T_5$ than in those on $T_1$. There were no significant differences in the digestibility of DM, CP, NDF, ADF and ADL (p>0.001) in cows on concentrate mixtures. This study therefore demonstrated that lactating dairy cows in Fiji need a level of readily fermented energy source such as molasses in their diets; however, a level above 10% is not nutritionally suitable for lactating dairy cows. Based on data on production parameters-milk yield, fat corrected milk, body condition score and apparent nutrient digestibility coefficients-molasses levels that range between 5-10% are recommended, however, 10% is the best and therefore recommended for inclusion in the concentrate mixture of lactating dairy cows on a basal diet of Setaria sphacelata in Fiji.

Effect of Supplementing Sheep with Sunflower Acid Oil or its Calcium Soap on Nutrient Utilization

  • Alexander, G.;Rao, Z. Prabhakara;Prasad, J. Rama
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.9
    • /
    • pp.1288-1293
    • /
    • 2002
  • Four adult rams ($22.25{\pm}0.90kg$) were used in a $4{\times}4$ latin square design to evaluate the rations without ($T_1$) or with supplementation of sunflower acid oil at 5 ($T_2$), 10 ($T_3$) or calcium soap at 10% of dietary DM ($T_4$) on nutrient digestibility and balances of nitrogen, calcium and phosphorus. The basal ration contained 60 parts Brazilian napier grass hay and 40 parts concentrate mixture. The DM, CF, NDF and ADF digestibilities and nitrogen retention (g/d) decreased (p<0.01) by inclusion of sunflower acid oil at 5% of dietary DM. In addition, depression (p<0.01) in digestibilities of CP, nitrogen free extract (NFE), cellulose, hemicellulose, retention of calcium and phosphorus (g/d) were also observed with increasing the level of sunflower acid oil to 10% of dietary DM. The EE digestibility, total digestible nutrients (TDN) content and calcium retention (g/d) were significantly higher (p<0.01) for ration supplemented with calcium soap. It is concluded that sunflower acid oil supplementation in free form as low as 5% of dietary DM is deleterious to fibre digestion in sheep while as calcium soap, it can be fed up to 10% of dietary DM as an energy source without any adverse effect.

Nutrient intake, digestibility and performance of Gaddi kids supplemented with tea seed or tea seed saponin extract

  • Kumar, M.;Kannan, A.;Bhar, R.;Gulati, A.;Gaurav, A.;Sharma, V.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.486-494
    • /
    • 2017
  • Objective: An experiment was conducted to determine the nutrient intake, digestibility, microbial protein synthesis, haemato-biochemical attributes, immune response and growth performance of Gaddi kids fed with oat fodder based basal diet supplemented with either tea seed or tea seed saponin (TSS) extract. Methods: Eighteen male kids, $7.03{\pm}0.16$ months of age and $19.72{\pm}0.64kg$ body weight, were distributed into three groups, $T_0$ (control), $T_1$, and $T_2$, consisting of 6 animals each in a completely randomized design. The kids were fed a basal diet consisting of concentrate mixture and oat fodder (50:50). Animals in group III ($T_2$) were supplemented with TSS at 0.4% of dry matter intake (DMI), and group II ($T_1$) were supplemented with tea seed at 2.6% of DMI to provide equivalent dose of TSS as in $T_2$. Two metabolism trials were conducted, 1st after 21 days and 2nd after 90 days of feeding to evaluate the short term and long term effects of supplementation. Results: The tea seed ($T_1$) or TSS ($T_2$) supplementation did not affect DMI as well as the digestibility of dry matter, organic matter, crude protein, neutral detergent fibre, and acid detergent fibre. Nutritive value of diet and plane of nutrition were also comparable for both the periods. However, the average daily gain and feed conversion ratio (FCR) were improved (p<0.05) for $T_1$ and $T_2$ as compared to $T_0$. The microbial protein supply was also higher (p<0.05) for $T_1$ and $T_2$ for both the periods. There was no effect of supplementation on most blood parameters. However, the triglyceride and low density lipoprotein cholesterol levels decreased (p<0.05) and high density lipoprotein-cholesterol level increased (p<0.05) in $T_2$ as compared with $T_0$ and $T_1$. Supplementation also did not affect the cell mediated and humoral immune response in goats. Conclusion: Tea seed at 2.6% of DMI and TSS at 0.4% DMI can be fed to Gaddi goats to improve growth rate, FCR and microbial protein synthesis.

Nitrate supplementation of rations based on rice straw but not Pangola hay, improves growth performance in meat goats

  • Paengkoum, Siwaporn;Khotsakdee, Jiravan;Paengkoum, Pramote;Schonewille, Thomas;Yuangklang, Chalermpon
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.1022-1028
    • /
    • 2021
  • Objective: Supplemental nitrate is known to be an effective tool to mitigate methane emission by ruminants. Based on theoretical considerations, supplemental nitrate can improve but also deteriorate the growth performance. The overall effect of supplemental nitrate on growth performance, however, is not yet known. The objective of the current study was therefore to evaluate the effect of a higher dose of NO3- on overall growth performance when feeding either Pangola grass hay or rice straw. Methods: Thirty-two crossbred, 3-month-old Thai native×Anglo-Nubian crossbred male goats were used. The experiment had a 2×2 factorial design with an experimental period of 60 days. Eight goats were randomly allocated to each dietary treatment, i.e. a ration containing either Pangola hay (Digitaria eriantha Steud) or rice straw (Oryza Sativa) as a source of roughage, supplemented with a concentrate containing either 3.2% or 4.8% potassium nitrate. The rations were formulated to be isonitrogenous. The animals were weighed at the start of the experiment and at days 30 and 60. Feces were collected during the last five days of each 30-day period. Results: High-nitrate increased overall DM intake by approximately 3%, irrespective the source of roughage, but only the goats fed a rice straw-based ration responded with an increase in body weight (BW). Thus, the overall feed conversion ratio (kg feed/kg BW gain) was influenced by roughage source ×nitrate and decreased by almost 60% when the goats were fed rice straw in combination with a high versus a low dietary nitrate content. The digestibility of macronutrients was only affected by the source of roughage and the digestibility of organic matter, crude protein, and neutral detergent fibre was greater when the goats were fed Pangola hay. Conclusion: It was concluded that the replacement of soybean meal by nitrate improves the growth performance of meat goats fed rations based on rice straw, but not Pangola hay.

Development of Leaf Protein Concentrates II. Extraction of Leaf Protein Concentrates of Some Plants Growing in Korea (잎 단백질(蛋白質)(Leaf Protein Concentrates)의 개발(開發)에 관한 연구(硏究) II. 한국산(韓國産) 각종 식물(植物)로 부터의 잎 단백질(蛋白質)의 추출(抽出))

  • Choe, Sang;Kim, Geon-Chee;Chun, Myung-Hi;Kim, Kil-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.17-25
    • /
    • 1970
  • Juice were extracted from fresh leaves of 70 species of plants growing in Korea by mincing and pressing the resulting pulp through a cotton cloth. Leaf protein concentrates could be prepared from many species of land and water plants that are at present economically unimportant. The choice of plants is of considerable important. Total-N, protein-N and pH determinations were made on the extracts, and total-N remaining in the fibre were calculated. Leaf protein concentrates were precipitated from the extracts at $75{\sim}80^{\circ}C$, and analysed total-N as protein-N of products. The present paper deals with the calculated yields of leaf protein concentrates from various plants, relations between yield of leaf protein concentrates and total-N of leaves, or pH of extracts, and the amino acid compositions of leaf protein concentrates. Results are summarized as follows. 1. Spinach and radish were the best sources of easily extractable, but good results were also obtained with indian mustard, kail, chenopod, red bean, cucumber, squash, houndberry, white flowered gourd, potato, Humulus japonicus, arrowroot and soybean as a good resources for the production of leaf protein concentrates. 2. In general, the greater the protein content of leaves the greater the yield of leaf protein concentrates. However, there are some plants difficult to make a adequate protein extraction by a simple mechanical process. 3. It was to be expected that leaf protein concentrates would be more extractable with the higher pH of extracts. There were a poor yield of the leaf protein concentrate in the pH values lower than 5.50 of the first extracts. 4. Protein content of the leaf protein concentrate shows marked differences, depending on species and season. It ranged between 29 to 80% of protein contents. However, the majority of plants yielded products containing more than 50% of protein. Products containing more than 75% of protein were obtained from two species of radish and indian mustard. Cabbage and Digitaria sanguinalis cilialis (summer) made products containing 29 to 32% of protein. 5. The amino acid composition of leaf protein concentrates was not greatly altered by species of plants. On an amino acid compositional basis, the leaf protein concentrate has a favorable balance of essential and non-essential amino acids, the only exception being methionine, which was usually low in all cases.

  • PDF