• Title/Summary/Keyword: Low Dose Radiation

Search Result 934, Processing Time 0.029 seconds

Effects of Low Dose $\gamma$-Radiation on the Growth, Activities of Enzymes and Photosynthetic Activities of Gourd (Lagenaria siceraria) (저선량 $\gamma$선 조사가 참박의 초기 생육과 효소 활성 및 광합성 능에 미치는 영향)

  • 이혜연;김재성;백명화;이영근;임돈순
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.3
    • /
    • pp.197-204
    • /
    • 2002
  • Gourd seeds were irradiated with the doses of 0-20 Gy to investigate the effect of the low dose $\gamma$-radiation on the early growth and physiological activity. The stimulating effects of the low dose y- radiation on the early growth were not noticeably high, but were increased generally at 4-16 Gy irradiation group. The catalase and peroxidase activity of cotyledon from seeds irradiated with $\gamma$- radiation were increased at 8 Gy irradiation group. The photochemical activity of leaf was noticeably high at 4 Gy irradiation group. The photochemical yield of PSII, estimated as Fv/Fm, decreased with increasing illumination time by 50% after 4 hrs in the control and 8 Gy irradiation group, while Fo slightly increased. However, Fv/Em in the 4 Gy irradiation group decreased by 40% of inhibition, indicating that photoinhibition decreased by the low dose $\gamma$- radiation. Changes in the effective quantum yield of PSII, $\varphi_{PSII}$ and 1/Fo- l/Fm, a measure of the rate constant of excitation trapping by the PSII reaction center, showed similar pattern to Fv/Em. NPQ decreased by 70% after photoinhibitory treatment with showing similar pattern between the control and the irradiation group. These results showed the positive effect of low dose $\gamma$- radiation on the seedling growth and the reduction of photoinhibition in the 4 Gy irradiation group.

Effects of Low Dose Gamma Radiation and Seed Moisture Content on Germination and Early Growth of Vegetable Crops (저선량 방사선 조사 시 종자수분함량이 채소류의 발아와 초기생장에 미치는 영향)

  • Baek, Myung-Hwa;Lee, Young-Keun;Lee, Young-Bok;Yang, Seung-Gyun;Kim, Jae-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.3
    • /
    • pp.215-219
    • /
    • 2003
  • To investigate the effects of low dose gamma radiation and seed moisture content (SMC) on germination and early growth of vegetable crops, seeds of chinese cabbage (Brassica campestris L.), radish (Raphanus sativus L.), red pepper (Capcicum annuum L.), figleaf gourd (Cucurbita ficifolia Bouche) and bottle gourd (Lagenaria siceraria Standl), with different SMC were irradiated with different doses ($0{\sim}20\;Gy$) of gamma-ray by irradiator ($^{60}Co$, ca.150 TBq of capacity, AECL). Vegetable crops in which low dose gamma radiation was irradiated in seeds with different moisture content showed different response in seed germination and early growth to low dose gamma radiation. The germination rate of chinese cabbage, figleaf ground and bottle gourd irradiated with $2{\sim}8\;Gy$ showed interactive responses against relative SMC. Also, significant interactions occurred for the early growth between those factors. The stimulating effects of gamma radiation were more pronounced for hydrated seeds of chinese cabbage, radish, figleaf gourd and bottle gourd showing prominent responses with $2{\sim}10\;Gy$ irradiation, particularly for chinese cabbage and bottle gourd. These results suggest that radiation may promote germination and early growth of vegetable crops through interaction with SMC.

Radiation Biology in Space; DNA Damage and Biological Effects of Space Radiation

  • Ohnishi, Takeo;Takahashi, Akihisa;Ohnishi, Ken
    • Journal of Photoscience
    • /
    • v.9 no.3
    • /
    • pp.37-40
    • /
    • 2002
  • Astronauts are constantly exposed to space radiation at a low-dose rate during long-tenn stays in space. Therefore, it is important to determine correctly the biological effects of space radiation on human health. Space radiations contain various kinds of different energy particles, especially high linear energy transfer (LET) particles. Therefore, we have to study the relative biological effectiveness (RBE) of space radiation under microgravity environment which may change RBE from a stress for cells. Furthermore, the research about space radiation might give us useful information about birth and evolution of life on the earth. We also can realize the importance of preventing the ozone layer from depletion by use of exposure equipment to sunlight at International Space Station (ISS).

  • PDF

Analysis of Individual Exposure Dose of Workers and Clinical Practice Students in Radiation Management Area (방사선관리구역내의 종사자 및 임상실습 학생의 개인피폭선량 비교 분석)

  • Lee, Joo-Ah
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.11
    • /
    • pp.383-388
    • /
    • 2017
  • The purpose of this study was to compare radiation dose among workers in the radiation zone and to compare the doses of students in clinical practice in the same area to provide basic data on optimization of radiation protection. The subjects were 121 radiation related workers, 36 radiation workers, and 121 students who completed 8 weeks of clinical practice from Jan. 2016 to Dec. The depth and surface dose between the radiation related workers and the radiation workers were the highest with $.7440{\pm}1.676mSv$ and $.7753{\pm}1.730mSv$, respectively, and statistically significant (p<.01). Among the three groups, the depth dose was the highest at $.143{\pm}.136mSv$ for clinical practice students and the highest at surface dose of $.1513{\pm}.139mSv$. The lowest in both cases, The mean difference between the two groups was statistically significant (p<.01). In conclusion, it is necessary to manage thoroughly according to the ALARA(As Low As Reasonably Achievable) principle. Especially, it is necessary to systematically manage the dose of radiation for clinical students who are in the blind spot of radiation safety management.

INSTORE : A PC-Based Database Program for Occupational Radiation Exposure of a Nuclear Power Plant

  • Cho, Yeong-Ho;Kang, Chang-Sun;Mun, Ju-Hyung;Kim, Hak-Su
    • Nuclear Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.308-317
    • /
    • 1998
  • Ensuring occupational radiation exposure(ORE) as low as is reasonably achievable(ALARA) has been one of very important requirements in a nuclear power plant. It is well known that about 70 percent of occupational dose has incurred from maintenance jobs in the outage period. To reduce occupational dose effectively, the high-dose jobs in the outage period should be identified with their dose reduction potentials and methods. In this study, a PC-based ORE database program, INSTORE, is developed to evaluate ORE doses in individual jobs, and the ORE data of Kori Units 3 and 4 are assembled to the database. Based on customary job classification, radiation work is classified into 26 main jobs which comprise 61 detailed jobs, and occupational doses are assessed according to each detailed job. As a result, high-dose jobs are identified with dose reduction priority in terms of collective ORE dose. It is recommended that adeqaute dose reduction methods for these jobs should be prepared to improve their working conditions and procedures.

  • PDF

Feasibility of normal tissue dose reduction in radiotherapy using low strength magnetic field

  • Jung, Nuri Hyun;Shin, Youngseob;Jung, In-Hye;Kwak, Jungwon
    • Radiation Oncology Journal
    • /
    • v.33 no.3
    • /
    • pp.226-232
    • /
    • 2015
  • Purpose: Toxicity of mucosa is one of the major concerns of radiotherapy (RT), when a target tumor is located near a mucosal lined organ. Energy of photon RT is transferred primarily by secondary electrons. If these secondary electrons could be removed in an internal cavity of mucosal lined organ, the mucosa will be spared without compromising the target tumor dose. The purpose of this study was to present a RT dose reduction in near target inner-surface (NTIS) of internal cavity, using Lorentz force of magnetic field. Materials and Methods: Tissue equivalent phantoms, composed with a cylinder shaped internal cavity, and adjacent a target tumor part, were developed. The phantoms were irradiated using 6 MV photon beam, with or without 0.3 T of perpendicular magnetic field. Two experimental models were developed: single beam model (SBM) to analyze central axis dose distributions and multiple beam model (MBM) to simulate a clinical case of prostate cancer with rectum. RT dose of NTIS of internal cavity and target tumor area (TTA) were measured. Results: With magnetic field applied, bending effect of dose distribution was visualized. The depth dose distribution of SBM showed 28.1% dose reduction of NTIS and little difference in dose of TTA with magnetic field. In MBM, cross-sectional dose of NTIS was reduced by 33.1% with magnetic field, while TTA dose were the same, irrespective of magnetic field. Conclusion: RT dose of mucosal lined organ, located near treatment target, could be modulated by perpendicular magnetic field.

Analysis of Cosmic Radiation Exposure for Domestic Flight Crews in Korea

  • Ahn, Hee-Bok;Hwang, Junga;Kwak, Jaeyoung;Kim, Kyuwang
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.51-57
    • /
    • 2022
  • Cosmic radiation exposure of the flight crews in Korea has been managed by Radiation Safety Management around Living Life Act under Nuclear Safety and Security Commission. However, the domestic flight crews are excluded from the Act because of relatively low route dose exposure compared to that of international flight crews. But we found that the accumulated total annual dose of domestic flight crews is far from negligible because of relatively long total flight time and too many flights. In this study, to suggest the necessity of management of domestic flight crews' radiation exposure, we statistically analyzed domestic flight crew's accumulative annual dose by using cosmic radiation estimation models of the Civil Aviation Research Institute (CARI)-6M, Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS), and Korean Radiation Exposure Assessment Model (KREAM) and compared with in-situ measurements of Liulin-6K LET spectrometer. As a result, the average exposure dose of domestic flight crews was found to be 0.5-0.8 mSv. We also expect that our result might provide the basis to include the domestic flight crews as radiation workers, not just international flight attendants.

Low Dose Cisplatin as a Radiation Sensitizer in Management of Locally Advanced Scluamous Cell Carcinoma of the Uterine Cervix : Evaluation of Acute Toxicity and Early Response (국소 진행된 자궁경부암의 방사선치료와 저용량 cisplatin 항암요법 동시치료시 급성독성 밀 초기반응 평가)

  • Kim Hunjung;Cho Young Kap;Kim Chulsu;Kim Woo Chul;Lee Sukho;Loh J K
    • Radiation Oncology Journal
    • /
    • v.17 no.2
    • /
    • pp.113-119
    • /
    • 1999
  • Purpose : To evaluate possible acute toxicity and early response of concurrent radiation therapy and low dose daily cisplatin as a radiosensitizer in patients with locally advanced uterine cervical carcinomas. Materials and Method : From December 1996 to January 1999, 38 previously untreated Patients with locally advanced squamous cell carcinoma of the uterine cervix (from stage IIB to stage IIIB) were treated at Inha University Hospital. All patients underwent standard pretreatment staging Procedures after the initial evaluation by gynecologists and radiation oncologists. Sixteen Patients with huge cervical mass (>4 cm) were submitted to the group treated with concurrent radiation therapy and low dose daily cisplatin while the remainder was treated with radiation therapy alone. Radiation therapy consisted of 4500 cGy external beam irradiation to whole pelvis (midline block after 3000 cGy), 900$\~$1000 cGy boost to involved parametrium, and high dose-rate intracavitary brachytherapy (a total dose of 3000$\~$3500 cGy/500 cGy per fraction to point A, twice per week). In the group treated with low dose cisplatin concurrently, 10 mg of daily intravenous cisplatin was given from the 1st day of radiation therapy to the 20th day of radiation therapy. Acute toxicity was measured according to expanded common toxicity criteria of the NCI (C) Clinical Trials. Early response data were analyzed at minimum 4 weeks' follow-up after completion of the treatment protocol. Results: Hematolgic toxici쇼 was more prominent in patients treated with radiation therapy and cisplatin. Six of 16 patients (37.5$\~$) treated with radiation therapy and cisplatin and one of 22 patients (4.5$\~$) treated with radiation therapy alone experienced grade 3 leukopenia. In Fisher's exact test, there was statistically significant difference between two groups regarding leukopenia (P=0.030). There was no apparent difference in the frequency of gastrointestinal and genitourinary toxicity between two groups (P=0.066). Three of 16 patients (18.7$\~$) treated with radiation therapy and cisplatin and two of 22 patients (9.1$\~$) treated with radiation therapy alone experienced more than 5 kg weight loss during the treatment. There was no statistically significant difference on weight loss between two groups (P=0.63). Two patients on each group were not evaluable for the early response because of incomplete treatment. The complete response rate at four weeks' follow-up was 80$\~$(16/20) for the radiation therapy alone group and 78$\~$ (11/14) for the radiation therapy and cisplatin group. There was no statistically significant difference in early response between two treatment groups (P=0.126). Conclusion : This study led to the conclusion that the hematologic toxicity from the treatment with concurrent radiation therapy and low dose daily cisplatin seems to be more prominent than that from the treatment of radiation therapy alone. There was no grade 4 hematologic toxicity or mortality in both groups. The hematologic toxicity in both treatment groups seems to be well managable modically. Since the risk factors were not balanced between two treatment groups, the direct comparison of early response of both groups was not possible. However, preliminary results regarding early response for patients with bulky cervical tumor mass treated with radiation therapy and low dose daily cisplatin was encouraging. Longer follow-up is necessary to evaluate the survival data. A phase III study is needed to evaluate the efficacy of concurrent daily low dose cisplatin with radiation therapy in bulky cervical cancer.

  • PDF

Analysis of Chromosomal Aberration Induced by Low Dose of Radiation (저선량방사선에 의한 염색체이상 빈도)

  • Yi, Chun-Ja;Ha, Sung-Whan
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.233-240
    • /
    • 1993
  • Chromosomal aberration analysis, as a basis for biological radiation dosimetry, was performed for radiation dose ranges below 150 cGy. The yield, ratio of lymphocytes with dicentric and/or ring chromosomes, was 0, 0, 0.4, 0.5, 0.6, 0.8, 1.8, 5.5, 8.0, and $18.5\%$ for 0,5, 10, 15, 20, 25, 50, 75, 100 and 150 cGy, respectively. The Qdr, ratio of dicentric and ring chromosomes in total lymphocytes, was 0, 0, 0.004, 0.005, 0.006, 0.009, 0.018, 0.055, 0.084 and 0.207, respectively. The Qdr, ratio of dicentric and ring chromosomes in lymphocytes with aberration, was 1.0 for the radiation doses up to 75 cGy and 1.05 and 1.11 for 100 and 150 cGy, respectively. From the results, it seems possible to estimate radiation dose from Ydr when the exposure is 25 cGy or more. All the 5 radiation workers studied, with exposure much less than 1 mSv per month, had chromosomal aberrations. And acentric fragment pairs, in addition to dicentric and ring chromosomes, showed good dose response relationship and so may be useful for biological dosimetry for low dose radiation.

  • PDF

BETTER UNDERSTANDING OF THE BIOLOGICAL EFFECTS OF RADIATION BY MICROSCOPIC APPROACHES

  • Kim, Eun-Hee
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.551-560
    • /
    • 2008
  • Radiation has stochastic aspects in its generation, its choice of interaction mode during traveling in media, and its impact on living bodies. In certain circumstances, like in high dose environments resulting from low-LET radiation, the variance in its impact on a target volume is negligible. On the contrary, in low dose environments, especially when they are attributed to high-LET radiation, the impact on the target carries with it a large variance. This variation is more significant for smaller target volumes. Microdosimetric techniques, which have been developed to estimate the distribution of radiation energy deposited to cellular and subcellular-sized targets, contrast with macrodosimetric techniques which count only the average value. Since cells and DNA compounds are the critical targets in human bodies, microdosimetry, or dose estimation by microscopic approach, helps one better analyze the biological effects of radiation on the human body. By utilizing microbeam systems designed for individual cell irradiation, scientists have discovered that human cells exhibit radiosensitive reactions without being hit themselves (bystander effect). During the past 10 or more years, a new therapeutic protocol using discontinuous multiple micro-slit beams has been investigated for its clinical application. It has been suggested that the beneficial bystander effect is the essence of this protocol.