• 제목/요약/키워드: Low Carbon steel

검색결과 541건 처리시간 0.028초

냉간압연가공시 Work roll 마멸과 판면조도에 관한 연구 (A Study on Work Roll Wear and Surface Roughness of Steel Strip in the Cold Rolling)

  • 전언찬;김순경
    • 한국정밀공학회지
    • /
    • 제8권4호
    • /
    • pp.33-40
    • /
    • 1991
  • The decrease in surface roughness of work roll and steel strip in cold rolling of low carbon steel strip has been investigated by working distance, materials, total separating force and total reduction ratio. The main results are as follows; For the same lubricating conditions. 1) The changing of surface roughness of steel strip were similar to work roll. The transcription ratio is in inverse proportion to the carbon content of steel strip. 2) The surface roughness of steel strip is hardly change according to changing of total separating force and total reduction ration. 3) The wear of work rolls surface is more rapid in that case of continuous casted steel strip than ingot casted steel strip. The aluminium content dull powder adhere on the rolls surface, and so. It makes the mirror surface of work roll accelerate.

  • PDF

Sliding Friction and Wear Behavior of C/C Composites Against 40 Cr Steel

  • Ge, Yicheng;Yi, Maozhong;Xu, Huijuan;Peng, Ke;Yang, Lin
    • Carbon letters
    • /
    • 제10권2호
    • /
    • pp.97-100
    • /
    • 2009
  • In this work, effects of carbon matrix on sliding friction and wear behavior of four kinds of C/C have been investigated against 40 Cr steel ring mate. Composite A with rough lamination carbon matrix (RL) shows the highest volume loss and coefficient of friction, while composite D with smooth lamination/resin carbon matrix (SL/RC) shows the lowest volume loss. The worn surface of composite A appears smooth, whereas that of composite C with smooth lamination carbon (SL) appears rough. The worn surface of composite D appears smooth under low load but rough under high load. Atomic force microscope images show that the size of wear particles on the worn surface is also dependent on the carbon matrix.

저탄소 보론강의 경화능에 미치는 W 첨가의 영향 (Effect of W Addition on the Hardenability of Low-Carbon Boron Steels)

  • 황병철
    • 한국재료학회지
    • /
    • 제24권9호
    • /
    • pp.488-494
    • /
    • 2014
  • The effect of tungsten (W) addition on the hardenability of low-carbon boron steels was investigated using dilatometry, microstructural observations and secondary ion mass spectroscopy. The hardenability was discussed with respect to transformation behaviour aspects depending on the segregation and precipitation of boron at austenite grain boundaries. A critical cooling rate producing a hardness corresponding to 90 % martensite structure was measured from a hardness distribution plot, and was used as a criterion to estimate hardenability at faster cooling rates. In the low-carbon boron steel, the addition of 0.50 wt.% W was comparable to that of 0.20 wt.% molybdenum in terms of critical cooling rate, indicating hardenability at faster cooling rates. However, the addition of 0.50 wt.% W was not more effective than the addition of .0.20 wt.% molybdenum at slower cooling rates. The addition of 0.20 wt.% molybdenum completely suppressed the formation of eutectoid ferrite even at the slow cooling rate of $0.2^{\circ}C/s$, while the addition of 0.50 wt.% W did not, even at the cooling rate of $1.0^{\circ}C/s$. Therefore, it was found that the effect of alloying elements on the hardenability of low-carbon boron steels can be differently evaluated according to cooling rate.

연속파 Nd:YAG 레이저를 이용한 Ni-MH전지용 저탄소강의 다층 박판 용접 특성 (Multi-thin plate welding characteristics of Low Carbon Steel for Ni-MH battery of using Continuous Wave Nd:YAG laser)

  • 양윤석;황찬연;유영태
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.720-728
    • /
    • 2011
  • Lap joint welding conducts low carbon steel plates using a 2.0kW continuous wave Nd:YAG laser beam. The specimen is composed of thin plate of 20 sheets. Process Variables contain two controlled parameters of the laser power and the welding speed. In order to quantitatively examine the characteristics of the lap welding, the welding quality of the cut section, stain-stress behavior, and the hardness of the welded part are investigated. The weld width difference between the top and the bottom because the welding speed is increased. The reason, cooling rate is decreased because of fast welding speed. When the heat input is higher, larger volume of the base metal will melt and the welding heat has longer time to conduct into the bottom from the top. The microstructure and tensile properties of the joints are investigated in order to analyze the effects of heat input on the quality of laser welded specimen. From the results of the investigation, We observe that welding quality is good for the laser power of 1800W, and laser welding speed from 1.8m/min to 2.2m/min.

자동차용 무침입형 극저탄소강의 파이버 레이저 용접에 대한 연구 (A Study on the Fiber Laser welding of Ultra-Low Carbon Interstitial Free Steel for Automotive)

  • 오용석;신호준;양윤석;황찬연;유영태
    • 한국생산제조학회지
    • /
    • 제20권3호
    • /
    • pp.342-349
    • /
    • 2011
  • The purpose of this paper is to describe experimental results about the butt welding and bead on plate welding of the high power Continuous Wave (CW) Fiber laser for Ultra-low carbon Interstitial Free(IF) steel plate for gear part of car. After being welded of the gear parts by the fiber laser and electron beam Microstructures of melting zone had been mixed acicular, granular bainitic, quasi-polygonal and widmanstatten ferrite because of a radical thermal diffusion after welding, difference of critical volume and grain size. As a result of experiment, when gear parts were welded by the fiber laser and electron beam, the fiber laser welding has been stable properties without internal defects more than the electron beam welding. Therefore it has the very advantages of welding high quality and productivity more than conventional melting method. The optimal welding processing parameters for gear parts were as follows : the laser power and welding speed were 3kWatt, 30mm/sec respectively. At this time heat input was $21.2{\times}10^3J/cm^2$.

저탄소 박판강재의 레이저 용접과정에서 열영향부에 존재하는 탄화물 입자의 분해 거동 (Dissolution of Carbide Particles at the Heat Affected Zone of Laser Welded tow Carbon Steel)

  • 김기철;조흥규;정호신
    • Journal of Welding and Joining
    • /
    • 제20권6호
    • /
    • pp.809-815
    • /
    • 2002
  • Metallurgical behavior of laser welded cold rolled low carbon steel was investigated. Welding was performed with CW Nd:YAG laser system. Applied laser power, travel speed and nitrogen blowing pressure were 720W CW, 17mm/s and 196kPa, respectively. According to the test results, many carbide particles were observed on the base metal surface that was polished and etched with nital solution. The carbide particles at the welding heat affected zone were thought to be dissolved during welding process. Microstructural inspection revealed that dissolved carbide particles formed mixed phase of very fine martensite and bainite. Test results also demonstrated that the hardness of matrix remained constant value of around 160Hv over the welding heat affected zone. Dissolved carbide particles, however, showed higher average hardness values of around 276Hv near the fusion boundary and 700Hv at the welding heat affected zone of 0.4mm apart from the fusion line. It was considered that care should be given to minimize the test error when measuring the hardness value since many of the dissolved particles were so small that it was not easy to aim the indentor of the testing machine just on the objects.

저탄소 보론강의 경화능에 미치는 Nb 첨가와 오스테나이트화 온도의 영향 (Influence of Nb Addition and Austenitizing Temperature on the Hardenability of Low-Carbon Boron Steels)

  • 황병철
    • 한국재료학회지
    • /
    • 제25권11호
    • /
    • pp.577-582
    • /
    • 2015
  • The present study is concerned with the influence of niobium(Nb) addition and austenitizing temperature on the hardenability of low-carbon boron steels. The steel specimens were austenitized at different temperatures and cooled with different cooling rates using dilatometry; their microstructures and hardness were analyzed to estimate the hardenability. The addition of Nb hardly affected the transformation start and finish temperatures at lower austenitizing temperatures, whereas it significantly decreased the transformation finish temperature at higher austenitizing temperatures. This could be explained by the non-equilibrium segregation mechanism of boron atoms. When the Nb-added boron steel specimens were austenitized at higher temperatures, it is possible that Nb and carbon atoms present in the austenite phase retarded the diffusion of carbon towards the austenite grain boundaries during cooling due to the formation of NbC precipitate and Nb-C clusters, thus preventing the precipitation of $M_{23}(C,B)_6$ along the austenite grain boundaries and thereby improving the hardenability of the boron steels. As a result, because it considerably decreases the transformation finish temperature and prohibits the nucleation of proeutectoid ferrite even at the slow cooling rate of $3^{\circ}C/s$, irrespective of the austenitizing temperature, the addition of 0.05 wt.% Nb had nearly the same hardenability-enhancing effect as did the addition of 0.2 wt.% Mo.

수원시 꽃뫼 유적 출토 철제유물의 미세조직 분석 (Microstructure investigation of iron artifacts excavated from Kkonmoe relic located in Suwon-si)

  • 유재은;고형순;이재성
    • 보존과학연구
    • /
    • 통권23호
    • /
    • pp.131-147
    • /
    • 2002
  • Kkonmoe relic located in Jangan-gu, Suwon-si, Gyeonggi-do Provinceis an example of the wide chronology from the Three Kingdoms Period to Joseon Dynasty. Examinations on a forged iron ax, a cast iron ax and an iron sickle excavated from this relic revealed the microstructure structure of the metal and the manufacturing technologies. Microstructure investigation was carried out with a metallurgical microscope and a Vickers hardness tester was used to measure the hardness of the micro structures. The test results show that the forged iron ax has a ferrite and pearlitestructure. It is made of low carbon steel and then carbonized to increase carbon content. After carbonization, the surface grains are reworked and the surface decarbonized. In case of the iron sickle, it is forged from low carbon steel, then carbonized and hardened, to increase overall strength. The sickle blade is carbonized and quenched after forging, resulting in afirm, solid blade. Heat treatment to remove brittleness is not applied to the cast ironartifact, which is manufactured by solidifing hypo-eutectic cast iron with a3-4% carbon content and white cast iron. All artifacts are produced from steel and subjected to a carbonization process. To increase hardness of the blade, additional heat treatment is applied.

  • PDF

결정립 미세화에 따른 이상조직 탄소강의 하중에 따른 마멸 기구 (Sliding Wear Mechanism of Ultra-Fine Grained Low Carbon Dual Phase Steel as n Function of Applied Load)

  • 유현석;이슬기;신동혁;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.421-424
    • /
    • 2007
  • Dry sliding wear behavior of ultra-fine grained (UFG) plain low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the UFG dual phase steel was compared with that of a coarse grained dual phase steel under various applied load conditions. Dry sliding wear test were carried out using a pin-on-disk type tester at various loads of 1N to 100N under a constant sliding speed condition of 0.20m/s against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss, measured to the accuracy of 10-5g by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and profilometer. Micro-vickers hardness of the cross section of worn surfaces were conducted to analyze strain hardening underneath the contact surfaces. The wear mechanism of the UFG dual phase steel was investigated with emphasis on the unstable nature of the grain boundaries of the UFG microstructure.

  • PDF

경정립 미세화에 따른 이상조직 탄소강의 하중에 따른 마멸기구 (Sliding Wear Mechanism of Ultra-Fine Grained Low Carbon Dual Phase Steel as a Function of Applied Load)

  • 유현석;이슬기;신동혁;김용석
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.299-303
    • /
    • 2007
  • Dry sliding wear behavior of ultra-fine grained(UFG) plain low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the UFG dual phase steel was compared with that of a coarse grained dual phase steel under various applied load conditions. Dry sliding wear test were carried out using a pin-on-disk type tester at various loads of 1N to 100N under a constant sliding speed condition of 0.20m/s against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss, measured to the accuracy of 10-5g by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and profilometer. Micro-vickers hardness of the cross section of worn surfaces were conducted to analyze strain hardening underneath the contact surfaces. The wear mechanism of the UFG dual phase steel was investigated with emphasis on the unstable nature of the grain boundaries of the UFG microstructure.