• Title/Summary/Keyword: Low $CO_2$ emissions

Search Result 266, Processing Time 0.025 seconds

Quantification of the CO2 Footprint in Residential Construction

  • Don Mah;Juan D. Manrique;Haitao Yu;Mohamed Al-Hussein;Reza Nasseri
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.525-536
    • /
    • 2009
  • The current residential process adheres to a traditional method of construction involving wood framing on-site on poured concrete foundations which has been widely applied in North America. A conventional residential construction process can include seventeen distinct stages ranging from stake-out to pre-occupancy inspection. The current practice possesses short comings including high construction material wastes, long scheduling timelines, adverse weather conditions, poor quality, low efficiencies and negative environmental impacts from transportation and equipment use. Over CAN $5 billion dollars was spent in the construction sector during 2007 in Canada. Previous findings in CO2 emissions during the construction process of a conventional dwelling emphasize more than 45 tonnes of CO2 emissions. Hence, in Alberta alone during 2007, almost 50,000 residential units would release more than two million tonnes of CO2. These numbers demonstrate the economical and environmental impact in building construction and its relationship with CO2 emissions. The aim of this paper is to quantify the CO2 emissions from the current residential construction process in order to establish the baseline for CO2 emission reduction opportunities. The quantification collection methodology will be approached by identifying the seventeen various stages of construction and quantifying the contributions of CO2 from specific activities and their impacts of work for each stage. The approach of separating these into separate stages for collection will allow for independent opportunities for analysis from various independent contractors from the entire scope of work. The use of BIM will be implemented to efficiently quantify CO2 emissions. Based on the CO2 quantification baseline, emission reduction opportunities such as an industrialized construction process will be introduced that allows homebuilders to reduce the environmental and economical impact of home construction while enabling them to produce higher quality, more energy efficient homes in a safer and shorter period of time.

  • PDF

A study on the UI design and program development for integrated management of carbon data in city (도시 탄소데이터 통합관리를 위한 프로그램 설계 방안 및 UI 연구)

  • Park, Jun-Hyoung;Kim, Seong-Sik;Kim, Jong-Woo;Choi, Guei-Tai
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.108-117
    • /
    • 2013
  • Studies on the regulation and measurement of greenhouse gases(GHGs) emissions have been carrying out for global wanning. In order to reduce greenhouse gas emissions, many countries have been promoting the Emissions Trading System and projects of the Joint Implementation(JI) and Clean Development Mechanism(CDM). These country's GHG emissions have been measured calculation criteria based on the Intergovernmental Panel on Climate Change(IPCC) Guidelines. In order to respond to GHGs regulation, in each country, it is planing to build a Low-Carbon City. The system has been developed for calculating GHGs emissions from companies and institutions in their respective countries. However, the system can monitor the GHGs per city, has not been developed. In this paper, it is studied to design the User Interface and to develop integrated monitoring program for Low-carbon city. This program will make possible monitoring and management, statistics, and reports written by using each data in units of cities.

Effect on Characteristics of Exhaust Emissions by Using Emulsified Fuel in Diesel Engine (디젤기관에 있어서 에멀젼연료가 배기배출물 특성에 미치는 영향)

  • Cho, Sang-Gon;Hwang, Sang-Jin;Yoo, Dong-Hoon;Lim, Jae-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.44-50
    • /
    • 2007
  • Diesel engines have high thermal efficiency, and they have less CO & HC emissions than another engines. while NOx & Soot emissions are very much. compared with exhaust emission standards. However, the limit level is more and more strengthened yearly due to the importance of environmental protection. So, the optimal countermeasures for the reduction of NOx & Soot emissions below limit level are required. Therefore. the author has investigated the effects of emulsified fuel on the characteristics of exhaust emissions. using an four-cycle, four-cylinder and direct injection diesel engine because the using of emulsified fuel among various methods for reducing NOx & Soot emissions is simple in installation low in cost and high in efficiency. The results of investigation according to various operating conditions are as follows : 1) Specific fuel consumption increase maximum 19.8% at low load. but is not affected at full load. 2) In case of emulsion ratio 25%, NOx emission decrease 32% at 75% load. 30% at full load. 3) In case of emulsion ratio 25%, Soot emission decrease 84% at 75% load, 59% at full load.

Comparison of Potential CO2 Reduction and Marginal Abatement Costs across Sectors and Provinces in the Chinese Manufacturing Industries (중국 제조업 부문별 CO2 잠재감축량 및 한계저감비용 지역 간 비교 분석)

  • Jin, Yingmei;Lee, Myunghun
    • Environmental and Resource Economics Review
    • /
    • v.22 no.3
    • /
    • pp.459-479
    • /
    • 2013
  • To assess the feasibility of 'low carbon, sustainable growth' policy pursued of the Chinese government, this paper first measures technical efficiency, $CO_2$ shadow prices, and indirect Morishima elasticity of substitution between capital and energy for 24 of manufacturing sectors in Beijing and Chongqing, in which China launched pilot carbon emissions trading scheme, by estimating the input distance function. Based on these results, then the potential for $CO_2$ reduction, cost savings from emissions trading, and the effectiveness of capital investment in reducing $CO_2$ are compared across industries and provinces. In 2010, manufacturing industries in Beijing and Chongqing could potentially reduce the largest $CO_2$ emissions, amounting 5.2 and 17 million tons, respectively, by achieving 100% technical efficiency. While, on average, Chongqing has a comparative advantage in the cost savings from carbon trading over Beijing, Beijing is more likely to reduce $CO_2$ by expanding capital investment.

An Experimental Study on the Performance and the Exhaust Emissions of Gasoline Engine Using Water-Gashol Blends as a Fuel (물-가스홀 혼합물을 연료로 사용한 가솔린기관의 성능 및 배기성분에 관한 실험적 연구)

  • 노상순;배명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.25-38
    • /
    • 1984
  • Since the energy shock in 1973, there have been wide studies for the developments of the alternative energy source, the rationalization of the energy utilization and the energy economy because of the recognition of the limitation of energy source all over the world. This study is experimentally examined in and compared with the engine performance of output, torque and fuel consumption rate, and the exhaust emissions with the change of engine rmp in the cases of using water-gashol blends, gashol and gasoline as a fuel in a conventional 4 cycle 4 cylinder gasoline engine. In the case of using water-gashol blends, it is installed by the exhaust manifold pipe into the intake manifold, and water is injected from nozzle fitted up the air horn of the carburetor. The results are obtained as follows; 1. In the case of an addition with water, the engine output and the torque are little difference with the case of gasoline. 2. The fuel consumption rate is decreased as compared with the case of gasoline. Especially, the decrease in quantity is remarkable at the low rpm. 3. The exhaust emissions are remarkably decreased as compared with the case of gasoline. Especially, decreases of CO and HC in quantity are remarkable at the low rpm, and a decrease of No/sub x/ in quantity is remarkable at the high rpm. 4. There is a moderate condition of operation because the producing factors of NO/sub x/ and CO, HC are contrary to each other.

  • PDF

The Combustion Characteristics of a New Cyclone Jet Hybrid Combustor for Low Pollutant Emission and High Flame Stability (저공해와 고안정성을 위한 신개념의 사이클론 제트 하이브리드 연소기의 연소특성)

  • Jung, Won-Suk;Hwang, Chul-Hong;Lee, Gyou-Young;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.146-153
    • /
    • 2004
  • A Promising new approach to achieve low pollutant emissions and improvement of flame stability is tested experimentally using a cyclone jet hybrid combustor employing both premixed and diffusion combustion mode. Three kinds of nozzle are tested for mixing enhancement of fuel and air. The LNG (Liquified Natural Gas) is used as a fuel. The combustor is operated by two methods. One is DC (Diffusion Combustion) mode generated swirl flow by air as general swirl combustor, and the other is HC (Hybrid Combustion) mode. The HC mode consists of diffusion jet flame of axial direction and premixed cyclone flame of tangential direction in order to stabilized the diffusion jet flame. The results showed that the flame stability of HC mode is significantly enhanced than that of DC mode through the change of mixing characteristics by modifications of fuel nozzle. In addition, the reductions of CO and NOx emission in HC mode, as compared with that for the DC mode, is large than about 50% in stable region. Also, even using the low calorific fuel as $CO_2$-blended gas, it is identified that the cyclone jet hybrid combustor has the high performance of flame stability.

Interaction Between Partially Premixed and Premixed Swirl Flames in a Hybrid/Dual Swirl Jet Combustor (하이브리드/이중 선회제트 연소기에서 부분예혼합-예혼합 선회화염의 상호작용)

  • Jo, Joonik;Hwang, Cheol-Hong;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.7-8
    • /
    • 2012
  • The effects of interaction between partially premixed and premixed swirl flames on CO and NOx emissions were experimentally investigated using a hybrid/dual swirl jet combustor for a micro-gas turbine. Under the condition of constant angle ($45^{\circ}$) for outer swirl vane, the angle and direction of inner swirl vane installed for a partially premixed flame were varied as main parameters with a constant fuel flow rate for each nozzle. It was found that for all conditions, CO and NOx emissions were measured below 4 ppm and 15 ppm at 15% $O_2$, respectively, in a wide range of equivalence ratio (0.6~0.9). For co-swirl flows, CO emission increased dramatically as the angle of inner swirl vane increased from $15^{\circ}$ to $45^{\circ}$ near lean-flammability limit (i.e. equivalence ratio of 0.5). On the other hand, the case of swirl $angle=45^{\circ}$ provided the lowest NOx emission at higher equivalence ratios than 0.6. For counter-swirl flows, the case of swirl $angle=45^{\circ}$ extended the lean-flammability limit but higher NOx emissions were found compared to those of co-swirl flows. These results could be inferred by interaction between (inner) partially premixed and (outer) premixed swirl flames. However, these estimations were not clear yet because there was insufficient data on turbulent flow structure and fuel-air mixing in the present experimental approach.

  • PDF

A Study on the Simultaneous Reduction of PM and NOX Emissions in Diesel Engines (Diesel 기관(機關)의 미립자(微粒子)와 NOX 동시저감(同時低減)에 관한 연구(硏究))

  • Oh, Young Taig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1238-1246
    • /
    • 1998
  • Recently, the automobile industry has been faced with very serious problems related to the very restricted regulations of exhaust gas emissions. Therefore many researchers have been attracted to the development of oxygenated fuel for a solution to these problems. This paper deals with the effects of oxygenated fuel on exhaust emissions. An experimental study was conducted to investigate PM and $NO_X$ emission using dimethyl carbonate as an oxygenated fuel in a naturally aspirated DI diesel engine. With increased oxygenated fuel amounts. there were significant reductions in PM, HC and CO emissions mainly from depressed thermal cracking. while little increase in $NO_X$ was encountered concurrently. The effective reduction in PM with oxygenated fuel was maintained with the presence of $CO_2$. which suggested low $NO_X$ and PM obtained from the combination of using oxygenated fuel and cooled EGR. Thermal cracking and an analysis of the heat release rate were also studied in the experiment.

OECD 국가의 이산화탄소 배출량 분해분석

  • Kim, Gwang-Uk;Gang, Sang-Mok
    • Environmental and Resource Economics Review
    • /
    • v.21 no.2
    • /
    • pp.211-235
    • /
    • 2012
  • This paper presents an alternative decomposition technique to identify the relative importance of factors associated with changes in $CO_2$ emissions by using directional distance function to model the joint production of desirable and undesirable outputs. The key feature of the proposed approach is the introduction of fossil and non-fossil fuel energy input efficiencies, productivity change and emission intensity change. For the 27 OECD countries as a whole, the empirical results indicate that economic growth is the most important contributor to $CO_2$ emissions increase, while efficiency change is the most important component to $CO_2$ emissions reduction between 1980 and 2007. For more extensive insights, this paper divided 3 groups according to the emission growth rate and find out that high emission countries show relatively low production efficiencies and technical changes contributing $CO_2$ emissions increase. The results also provide that more strict environmental regulations are needed to improve the pollution intensity in these countries.

  • PDF

Sustainable concrete mix design for a target strength and service life

  • Tapali, Julia G.;Demis, Sotiris;Papadakis, Vagelis G.
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.755-774
    • /
    • 2013
  • Considering the well known environmental issues of cement manufacturing (direct and indirect levels of $CO_2$ emissions), clinker replacement by supplementary cementing materials (SCM) can be a very promising first step in reducing considerably the associated emissions. However, such a reduction is possible up to a particular level of SCM utilization, influenced by the rate of its pozzolanic reaction. In this study a (4-step) structured methodology is proposed in order to be able to further adjust the concrete mix design of a particular SCM, in achieving additional reduction of the associated levels of $CO_2$ emissions and being at the same time accepted from a derived concrete strength and service life point of view. On this note, the aim of this study is twofold. To evaluate the environmental contribution of each concrete component and to provide the best possible mix design configuration, balanced between the principles of sustainability (low environmental cost) and durability (accepted concrete strength and service life ). It is shown that such a balance can be achieved, by utilising SCM by-products in the concrete mix, reducing in this way the fixed environmental emissions without compromising the long-term safety and durability of the structure.