• Title/Summary/Keyword: Loss-of-coolant Accident

Search Result 208, Processing Time 0.021 seconds

Evaluation of Unavailability of the Containment Spray System by use of a Cause-Consequence Chart

  • Park, Gwi-Tae;Chun, Hee-Young;Lee, Chang-Kun
    • Nuclear Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.195-202
    • /
    • 1979
  • In this paper, a cause-consequence chart is applied to evaluate the probability that the containment spray system in a nuclear power plant may not be woring properly, given a demand for spryaing at loss of coolant accident (LOCA). It is shown how the diagram provides a basis for calculating two probability measures for malfunctioning of this system, in case the test policy of the system is taken into account, i.e., average probability that the containment spray cannot be established, and average probability that the containment spray is established : spray stops before the required operating time is over.

  • PDF

Determination of Hot Leg Recirculation Switchover Time to Prevent Boron Precipitation during Post-LOCA LTC for ULCHIN l&2

  • Park, Han-Rim;Ban, Chang-Hwan;Jeong, Jae-Hoon;Hwang, Sun-Tack;Chang, Byong-Hoon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.328-333
    • /
    • 1996
  • Boric acid concentrations of the refueling water storage tank (RWST) and the accumulators for Ulchin 1&2 (UCN 1&2) are increased to meet the post loss of coolant accident (post-LOCA) shutdown requirement for the extended fuel cycles from 12 months to 18 months. To maintain long term cooling (LTC) capability following a LOCA, the switchover tine is examined using BORON code to prevent the boron precipitation in the reactor core with the increased boron concentrations. The analysis results show that, at 8 hours after the initiation of LOCA. the emergency core noting system (ECCS) should be manually realigned to the simultaneous recirculation mode from the cold leg recirculation mode.

  • PDF

Establishment of the Procedure to Prevent Boron Precipitation During Post-LOCA Long Term Cooling for WH 3-Loop NPPs

  • Cho, H.R.;Lee, S.K.;Ban, C.H.;Hwang, S.T.;Chang, B.H.
    • Nuclear Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.47-57
    • /
    • 1998
  • Boric acid concentrations of the refueling water storage tank and the accumulators for Westinghouse 3-loop type plants are increased to meet the post loss of coolant accident shutdown requirement for the extended fuel cycles from 12 months to 18 months. To maintain long term cooling capability following a LOCA, the switchover time is examined using BORON code to prevent the boron precipitation in the reactor core with the increased boron concentrations. The analysis results show that hot leg recirculation switchover times are shortened to 7.5 hours from 24 hours after the initiation of LOCA for Kori 3&4 and 8 hours from 18 hours for Ulchin 1&2, respectively. The How path in the mode J for Kori 3&4 is recommended to realign to the simultaneous recirculation of both hot and cold legs from the cold leg recirculation, as done by Ulchin 1&2.

  • PDF

Mitigation of Flooding under Externally Imposed Oscillatory Gas Flow

  • Lee, Jae-Young;Chang, Jen-Shih
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.475-479
    • /
    • 1995
  • During the hypothetical loss of coolant accident in the nuclear power plant the emergency core cooling water could not penetrate to the reactor core when the steam flow rate from the reactor core exceeds CCFL (Countercurrent flow limitation). The CCFL generated by earlier investigators are developed under the steady gas flow. However the flow instability in the reactor loop could generate oscillatory steam flow, hence their applicability under oscillating flow should be investigated. In this work, an experimental investigation of countercurrent flow in the vertical flow channel has been conducted under oscillatory gas flow. Pulsation of gas under oscillatory flow disturbs the flow pattern significantly and prevents flooding (CCFL) when its minimum value is less than the threshold gas flow rate value.

  • PDF

Free Vibration Analysis of the Partial Fuel Assembly Under Water Using Substructure Method (부분구조법을 이용한 부분핵연료 집합체의 수중 자유진동해석)

  • Lee, Kang-Hee;Yoon, Kyung-Ho;Song, Kee-Nam;Kim, Jae-Yong;Rhee, Hui-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.246-249
    • /
    • 2006
  • Finite element vibration analysis of the trial 5x5 partial fuel assembly in the still water was performed using the substructure method. ANSYS software was used as a finite element modeling and modal analysis tool. The calculated natural frequencies of the partial fuel assembly were more consistent with the experimental results for the identical test model compared to the much larger solid model. This modeling technique can be utilized for the fuel assembly dynamic behavior analysis under normal operation, seismic and loss-of-coolant-accident analysis.

  • PDF

Application of Coupled Reactor Kinetics Method to a CANDU Reactor Kinetics Problem.

  • Kim, Hyun-Dae-;Yeom, Choong-Sub;Park, Kyung-Seok-
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.11a
    • /
    • pp.141-145
    • /
    • 1994
  • A computer code for solving the 3-D time-dependent multigroup neutron diffusion equation by a coupled reactor kinetics method recently developed has been developed and for evaluating its applicability in CANDU transient analysis applied to a 3-D kinetics benchmark problem which reveals non-uniform loss of coolant accident followed by an asymmetric insertion of shutdown devices. The performance of the method and code has been compared with the CANDU design code, CERBERUS, employing a finite difference improved quasistatic method.

  • PDF

Axial strength of Zircaloy-4 samples with reduced thickness after a simulated loss of coolant accident

  • Desquines, Jean;Taurines, Tatiana
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2295-2303
    • /
    • 2021
  • To investigate wall-thinning impact on axial load resistance of Zircaloy-4 cladding rods after a LOCA transient, axial tensile samples have been machined on as-received tubes with reduced thicknesses between 370 and 580 ㎛. After high temperature oxidation under steam at 1200 ℃ with measured ECR ranging from 10 to 18% and water quenching, machined samples were axially loaded until fracture. These tests were modeled using a fracture mechanics approach developed in a previous study. Fracture stresses are rather well predicted. However, the slightly lower fracture stress observed for wall-thinned samples is not anticipated by this modeling approach. The results from this study confirm that characterizing the axial load resistance using semi-integral tests including the creep and burst phases was the best option to obtain accurate axial strengths describing accurately the influence of wall-thinning at burst region.

Development and testing of multicomponent fuel cladding with enhanced accidental performance

  • Krejci, Jakub;Kabatova, Jitka;Manoch, Frantisek;Koci, Jan;Cvrcek, Ladislav;Malek, Jaroslav;Krum, Stanislav;Sutta, Pavel;Bublikova, Petra;Halodova, Patricie;Namburi, Hygreeva Kiran;Sevecek, Martin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.597-609
    • /
    • 2020
  • Accident Tolerant Fuels have been widely studied since the Fukushima-Daiichi accident in 2011 as one of the options on how to further enhance the safety of nuclear power plants. Deposition of protective coatings on nuclear fuel claddings has been considered as a near-term concept that will reduce the high-temperature oxidation rate and enhance accidental tolerance of the cladding while providing additional benefits during normal operation and transients. This study focuses on experimental testing of Zr-based alloys coated with Cr-based coatings using Physical Vapour Deposition. The results of long-term corrosion tests, as well as tests simulating postulated accidents, are presented. Zr-1%Nb alloy used as nuclear fuel cladding serves as a substrate and Cr, CrN, CrxNy layers are deposited by unbalanced magnetron sputtering and reactive magnetron sputtering. The deposition procedures are optimized in order to improve coating properties. Coated as well as reference uncoated samples were experimentally tested. The presented results include standard long-term corrosion tests at 360℃ in WWER water chemistry, burst (creep) tests and mainly single and double-sided high-temperature steam oxidation tests between 1000 and 1400℃ related to postulated Loss-of-coolant accident and Design extension conditions. Coated and reference samples were characterized pre- and post-testing using mechanical testing (microhardness, ring compression test), Thermal Evolved Gas Analysis analysis (hydrogen, oxygen concentration), optical microscopy, scanning electron microscopy (EDS, WDS, EBSD) and X-ray diffraction.

Safety Review of Severe Accident Senario for Wet Spent Fuel Storage Facility (사용후핵연료 습식저장 시설의 중대사고 안전성 검토)

  • Shin, Tae-Myung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.4
    • /
    • pp.231-236
    • /
    • 2011
  • When the Fukushima nuclear power plant accident occurred in March of 2011, a hydrogen explosion in the reactor building at the 4th unit of Fukushima plants led to a big surprise because the full core of the unit 4 reactor had been moved and stored underwater at the spent nuclear fuel storage pool for periodic maintenance. It was because the possible criticality in the fuel storage pool by coolant loss may yield more severe situation than the similar accident happened inside the reactor vessel. Fortunately, it was assured to be evitable to an anxious situation by a look of water filled in the storage pool later. In the paper, the safety state of the spent fuel storage pool and rack structures of the domestic nuclear plants would be roughly reviewed and compared with the Fukushima plant case by engineering viewpoint of potential severe accidents.

3-Dimensional Analysis of the Steam-Hydrogen Behavior from a Small Break Loss of Coolant Accident in the APR1400 Containment

  • Kim Jongtae;Hong Seong-Wan;Kim Sang-Baik;Kim Hee-Dong;Lee Unjang;Royl P.;Travis J. R.
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.24-35
    • /
    • 2004
  • In order to analyze the hydrogen distribution during a severe accident in the APR1400 containment, GASFLOW II was used. For the APR1400 NPP, a hydrogen mitigation system is considered from the design stage, but a fully time-dependent, three-dimensional analysis has not been performed yet. In this study GASFLOW code II is used for the three-dimensional analysis. The first step to analysis involving hydrogen behavior in a full containment with the GASLOW code is to generate a realistic geometry model, which includes nodalization and modeling of the internal structures such as walls, ceilings and equipment. Geometry modeling of the APR1400 is conducted using GUI program by overlapping the containment cut drawings in a graphical file format on the mesh view. The total number of mesh cells generated is 49,476. And the calculated free volume of the APR1400 containment by GASFLOW is almost the same as the value from the GOTHIC modeling. A hypothetical SB-LOCA scenario beyond design base accident was selected to analyze the hydrogen behavior with the hydrogen mitigation system. The source of hydrogen and steam for the GASFLOW II analysis is obtained from a MAAP calculation. Combustion pressure and temperature load possibilities within the compartments used in the GOTHIC analysis are studied based on the Sigma-Lambda criteria. Finally the effectiveness of HMS installed in the APR1400 containment is evaluated from the point of severe accident management