• Title/Summary/Keyword: Loss-less snubber

Search Result 34, Processing Time 0.026 seconds

A Design of AC-DC Converter using Bi-directional Partial Resonant Soft-Switching (양방향 부분공진 소프트 스위칭을 적용한 AC-DC컨버터의 설계)

  • Yun, S.H.;Koh, K.H.;Suh, K.Y.;Kwon, S.K.;Lee, H.W.;Lee, C.W.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1023-1025
    • /
    • 2001
  • This paper proposes a bi-directional current switch with snubber regeneration using Power MOSFETs and this paper proposes to use a loss-less snubber with switching device to perform soft-switching. It results in not only decreasing switching loss in the device drastically, but also improving input ac current waveform distortion. The computer simulation results show that the input current waveform and show the requirements necessary for the elimination of the 3rd harmonic component. We also show the procedure to design the parameters of the converter.

  • PDF

A Design of Converter using Bi-directional Partial Resonant Soft-Switching (양방향 부분공진 소프트 스위칭을 적용한 컨버터 회로 설계)

  • Yun, S.H.;Kim, C.S.;Suh, K.Y.;Lee, H.W.;Kim, K.T.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.212-214
    • /
    • 2001
  • This paper proposes a hi-directional current switch with snubber regeneration using Power MOSFETs and to use a loss-less snubber with switching device to perform soft-switching. It results in not only decreasing switching loss in the device drastically, but also improving input ac current waveform distortion. The computer simulation results show that the input current waveform and show the requirements necessary for the elimination of the 3rd harmonic component. We also show the Procedure to design the parameters of the converter.

  • PDF

A Study on Input Current Waveform Analysis for Step Up-Down AC-DC Converter of High Power Factor added Electric Isolation (고역률 스텝 업-다운 절연형 AC-DC 컨버터의 입력전류 파형분석에 관한 연구)

  • Kwak, Dong-Kurl;Kim, Choon-Sam;Lee, Bong-Seob;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.34-36
    • /
    • 2008
  • This paper is given a full detail of mathematical analyses of input current for novel active type power factor correction(PFC) AC-DC converter of step up-down added electric isolation. These are compared with harmonics components of input current for a conventional PFC converter of electric isolation type. The proposed PFC converter is constructed in using a new loss-less snubber circuit to achieve a soft switching of control device. Also the proposed converter for discontinuous conduction mode(DCM) eliminates the complicated circuit control requirement and reduces the size of components. The input current waveform in the proposed converter is got to be a sinusoidal form of discontinuous pulse in proportion to magnitude of ac input voltage under the constant duty cycle switching. Therefore, input power factor is nearly unity and the control method is simple. Particularly, the stored energy of loss-less snubber capacitor is recovered with input side and increases input current from resonant operation. The result is that input power factor of the proposed converter is higher than that of a conventional PFC converter. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.

  • PDF

A Study on Waveform Analysis of Input Current for Novel Boost AC-DC Converter of High Power Factor (새로운 고역률 승압형 AC-DC 컨버터의 입력전류 파형분석에 관한 연구)

  • Kwak, Dong-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.102-108
    • /
    • 2005
  • In this paper, authors propose novel boost AC-DC converter of high power factor and analyze for waveform and harmonics component of input current. The input current waveform in the proposed converter is got to be a sinusoidal form of discontinuous pulse in proportion to magnitude of at input voltage under the constant duty cycle switching. Therefore, input power factor is nearly unity. Particularly, the stored energy of loss-less snubber capacitor is recovered with input side and increases input current from resonant operation. The result is that input power factor of the proposed converter is higher than that of conventional converter of high power factor. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.

Analysis of partial resonant AC-DC converter for high power and power factor

  • Mun, Sang-Pil;Kim, Si-Lyur;Lee, ki-Youn;Hyun-Woo;Katsunori taniguchi, Katsunori-Taniguchi
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.920-927
    • /
    • 1998
  • This paper proposed that an Analysis of a partial resonant AC-DC converter for high power and power factor operates with four choppers connecting to a number of parallel circuit. To improve these, a large number of soft switching topologies included a resonant circuit have been proposed. And, some simulative results on computer are included to confirm the validity of the analytical results. The partial resonant circuit makes use of an inductor using step-down and a condenser of lose-less snubber. The result is that the switching loss is very low and the efficiency of system is high. And the snubber condenser used in a partial resonant circuit makes charging energy regenerated at input power source for resonant operation. The proposed conversion system is deemed the most suitable for high power applications where the power switching devices are used

  • PDF

Boost AC-DC Converter of High Power Factor and High Efficiency (고역률 고효율 승압형 AC-DC 컨버터)

  • Kwak, Dong-Kurl;Kim, Choon-Sam;Park, Ha-Yong;Shim, Jae-Sun;Shim, Sang-Heung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.7
    • /
    • pp.45-52
    • /
    • 2005
  • This paper is studied on boost AC-DC converter of high power factor and high efficiency for discontinuous current control. The converter operated in discontinuous current control eliminates the complicated circuit control requirement, and reduces a number of components. The input current waveform in proposed circuit is got to be a discontinuous sinusoidal form in proportion to magnitude of ac input voltage under the constant duty cycle switching. Therefore, the input power factor is nearly unity and the control circuit is simple. Also the switching devices in a proposed circuit are operated with soft switching by the partial resonant method. The result is that the switching loss is very low and the efficiency of system is high. The partial resonant circuit makes use of a inductor using step up and loss-less snubber capacitor. The circuit topology of the converter is simplified. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.

A Study on Step Up-Down AC-DC Converter with DCM-ZVS of High Performance (고성능 DCM-ZVS 스텝 업-다운 AC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.335-342
    • /
    • 2012
  • This paper is studied on a new DCM-ZVS step up-down AC-DC converter of high performance, that is, high system efficiency and power factor correction (PFC). The switching devices in the proposed converter are operated by soft switching technique using a new quasi-resonant circuit, and are driven with discontinuous conduction mode (DCM) according to pulse width modulation (PWM). The quasi-resonant circuit uses a step up-down inductor and a loss-less snubber capacitor. The proposed converter with DCM also simplifies the requirement of control circuits and reduces the number of control components. The input AC current waveform in the proposed converter becomes a quasi-sinusoidal waveform proportional to the magnitude of input AC voltage under constant switching frequency. As a result, the proposed converter obtains low switching power loss and high efficiency, and its input power factor is nearly in unity. The validity of the analytical findings is confirmed by some computer simulation results and experimental results.

Analysis of input current in a Boost AC-DC converter using the partial resonant method (부분공진 승압형 AC-DC 컨버터의 입력전류 해석)

  • Kwak, Dong-Kurl;Lee, Kyung-Chin;Park, Jum-Mun;Lee, Jin-Ho;Kim, Young-Mun;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.185-187
    • /
    • 1995
  • A boost converter proposed in this paper operates with high power factor due to input current of sinusoidal waveform. If there were no input LPF, the current is got to be discontinuos form in proportion to AC input voltage magnitude under the constant duty factor switching. Thereupon, the harmonics of input current waveform is reduced and the LPF is made with few elaboration and the control circuit is simple. The switching devices in proposed circuit are operated with soft switching by the partial resonant method. The patial resonant circuit makes use of a reactor using step-up and a capacitor of loss-less snubber. The result is that switching loss is very low and efficiency of system is high.

  • PDF

DC Rail Side Series Switch and Parallel Capacitor Snubber-Assisted Edge Resonant Soft-Switching PWM DC-DC Converter with High-Frequency Transformer Link

  • Morimoto, Keiki;Fathy, Khairy;Ogiwara, Hiroyuki;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.181-190
    • /
    • 2007
  • This paper presents a novel circuit topology of a DC bus line series switch and parallel snubbing capacitor-assisted soft-switching PWM full-bridge inverter type DC-DC power converter with a high frequency planar transformer link, which is newly developed for high performance arc welding machines in industry. The proposed DC-DC power converter circuit is based upon a voltage source-fed H type full-bridge soft-switching PWM inverter with a high frequency transformer. This DC-DC power converter has a single power semiconductor switching device in series with an input DC low side rail and loss less snubbing capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge arms and DC bus line can achieve ZCS turn-on and ZVS turn-off transition commutation. Consequently, the total switching power losses occurred at turn-off switching transition of these power semiconductor devices; IGBTs can be reduced even in higher switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules can be realized at 60 kHz. It is proved experimentally by power loss analysis that the more the switching frequency increases, the more the proposed DC-DC power converter can achieve a higher control response performance and size miniaturization. The practical and inherent effectiveness of the new DC-DC converter topology proposed here is actually confirmed for low voltage and large current DC-DC power supplies (32V, 300A) for TIG arc welding applications in industry.

A Noel Soft-Switching AC-DC Converter using $L^2SC$

  • Kim C. S.;Lee H. W.;Suh K. Y.;Kim H. D.;Kim K. T.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.271-275
    • /
    • 2001
  • In this paper, proposes a novel AC-DC converter of high power factor and high efficiency by partial resonant method. The input current waveform in proposed circuit is got to be a discontinuous sinusoidal form in proportion to magnitude of ac input voltage under the constant duty cycle switching. Thereupon, the input power factor is nearly unity and the control circuit is simple. Also the switching devices in a proposed circuit are operated with soft switching by the partial resonant method. The result is that the switching loss is very low and the efficiency of system is high. The partial resonant circuit makes use of a inductor using step up and $L^2SC$ (Loss-Less Snubber Condenser). The switching control technique of the converter is simplified for switches to drive in constant duty cycle. Some simulative results and experimental results are included to confirm the validity of the analytical results.

  • PDF