• 제목/요약/키워드: Loss of Power

Search Result 4,962, Processing Time 0.034 seconds

Power Gain during Partial Shade Condition with Partial Shade Loss Compensation in Photovoltaic System

  • Yoon, Byung-Keun;Yun, Chul;Cho, Nae-Soo;Choi, Sang-Back;Jin, Yong-Su;Kwon, Woo-Hyen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.769-780
    • /
    • 2018
  • This paper presents an analysis of the power gain under partial shading conditions (PSC) when the partial shade loss is being compensated in photovoltaic(PV) system. To analyze the power gain, our study divides the mismatch loss into partial shade loss and operating point loss. Partial shade loss is defined as the power difference between a normal string and a partially shaded string at the maximum power point (MPP). Operating point loss is defined as the power loss due to the operating point shift while following the MPP of the PV array. Partial shading in a PV system affects the maximum power point tracking (MPPT) control by creating multiple MPPs, which causes mismatch losses. Several MPPT algorithms have been suggested to solve the multiple MPP problems. Among these, mismatch compensation algorithms require additional power to compensate for the mismatch loss; however, these algorithms do not consider the gain or loss between the input power required for compensation and the increased output power obtained after compensation. This paper analyzes the power gain resulting from the partial shade loss compensation under PSC, using the V-P curve of the PV system, and verifies that power gain existence by simulation and experiment.

The Optimized Design of a NPC Three-Level Inverter Forced-Air Cooling System Based on Dynamic Power-loss Calculations of the Maximum Power-Loss Range

  • Xu, Shi-Zhou;He, Feng-You
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1598-1611
    • /
    • 2016
  • In some special occasions with strict size requirements, such as mine hoists, improving the design accuracy of the forced-air cooling systems of NPC three-level inverters is a key technology for improving the power density and decreasing the volume. First, a fast power-loss calculation method was brought. Its calculation principle introduced in detail, and the computation formulas were deduced. Secondly, the average and dynamic power losses of a 1MW mine hoist acting as the research target were analyzed, and a forced-air cooling system model based on a series of theoretical analyses was designed with the average power loss as a heat source. The simulation analyses proves the accuracy and effectiveness of this cooling system during the unit lifting period. Finally, according to an analysis of the periodic working condition, the maximum power-loss range of a NPC three-level inverter under multi cycle operation was obtained and its dynamic power loss was taken into the optimized cooling system model as a heat source to solve the power device damage caused by instantaneous heat accumulation. The effectiveness and feasibility of the optimization design based on the dynamic power loss calculation of the maximum power-loss range was proved by simulation and experimental results.

Experimental Evaluation on Power Loss of Coreless Double-side Permanent Magnet Synchronous Motor/Generator Applied to Flywheel Energy Storage System

  • Kim, Jeong-Man;Choi, Jang-Young;Lee, Sung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.256-261
    • /
    • 2017
  • This paper deals with the experimental evaluation on power loss of a double-side permanent magnet synchronous motor/generator (DPMSM/G) applied to a flywheel energy storage system (FESS). Power loss is one of the most important problems in the FESS, which supplies the electrical energy from the mechanical rotation energy, because the power loss decreases the efficiency of energy storage and conversion of capability FESS. In this paper, the power losses of coreless DPMSM/G are separated by the mechanical and rotor eddy current losses in each operating mode. Moreover, the rotor eddy current loss is calculated by the 3-D finite element analysis (FEA) method. The analysis result is validated by separating the power loss as electromagnetic loss and mechanical loss by a spin up/down test.

A Study on the Optimal Method of Loss Calculation in Distribution System (배전계통에 있어서 최적 손실산정 기법에 관한 연구)

  • 김미영;노대석;황혜미;김광호;신성수;김재언
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.6
    • /
    • pp.340-349
    • /
    • 2004
  • Recently, the needs and concerns for the power loss are increasing according to the energy conservation at the level of the national policies and power utilities's business strategies. Especially, the issue of the power loss is the main factor for the determining the electric pricing rates in the circumstances of the deregulation of electrical industry. However, because of the lacking of management for power loss load factors (LLF), it is difficult to make a calculation for the power loss and to make a decision for the electric rates. And loss factor(k-factor), which is a most important factor for calculation of the distribution power loss, has been used as a fixed value of 0.32 since the fiscal year 1973. Therefore, This study presents the statistical calculation methods of the loss factors classified by load types and seasons by using the practical data of 65 primary feeders which are selected by proper procedures. Based on the above the algorithms and methods, the optimal method of the distribution loss management classified by facilities such as primary feeders, distribution transformers and secondary feeders is presented. The simulation results show the effectiveness and usefulness of the proposed methods.

Analysis of Power Loss of an Optical Disc Drive due to the Tilting Motion of a Rotating Disc (ODD 회전 디스크의 틸팅 각운동에 의한 소모전력 해석)

  • Chong, H.Y.;Sung, S.J.;Jang, G.H.
    • Transactions of the Society of Information Storage Systems
    • /
    • v.6 no.2
    • /
    • pp.57-62
    • /
    • 2010
  • This paper measured and analyzed the source of total power loss of an ODD of a notebook computer. It shows that the biggest power loss is the windage loss due to the friction between rotating disk and surrounding air. It measured the power loss by the tilting motion of a rotating disc which is originated from the unbalanced mass of the rotating disc or the squareness between case-rotor and shaft. The power loss of rotating disc due to tilting motion was also calculated by using FLUENT, and it was correlated with the measured one. This paper shows that the one of the effective methods to reduce the power loss of an ODD is to reduce the tilting motion of a rotating disc.

Study on the Power Loss of High Frequency Mn-Zn ferrites (고주파 Mn-Zn ferrites 전력손실에 대한 고찰)

  • 서정주
    • Resources Recycling
    • /
    • v.11 no.5
    • /
    • pp.34-38
    • /
    • 2002
  • To minimize the size of transformer volume, the operating frequency of ferrites cores increasing. The power loss of Mn-Zn ferrites comprises hysteresis loss, eddy current loss and residual loss. In the range more then 500 KHz, the total power loss is mainly due to the residual loss. The power loss increase with the frequency 3rd power. To minimize residual loss as well as eddy current loss, the microstructure should have small grain and high density, It should be noted that as the product of resonance frequency and static permeability increase, the power loss decrease at high frequency region.

Optimal Calculation Method of Distribution Loss in Distribution Systems

  • Rho Dae-Seok
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.109-115
    • /
    • 2005
  • Recently, the needs and concerns regarding power loss have been increasing according to energy conservation at the level of the national policies and the business strategies of power utilities. In particular, the issue of power loss is the main factor for determining rates for electrical consumption in the deregulation of the electrical industry. However, because of the lack of management for power loss load factors (LLF) it is difficult to make a calculation for power loss and to make a decision concerning the electric rates. Furthermore, loss factor (k-factor) in Korea, which is of primary significance in the calculation of distribution power loss, has been used as a fixed value of 0.32 since the fiscal year 1973. Therefore, this study presents the statistical calculation methods of the loss factors classified by load types and seasons by using the practical data of 65 primary feeders that have been selected by appropriate procedures. Based on the above, the algorithms and methods, as well as the optimal method of the distribution loss management classified by facilities such as primary feeders, distribution transformers and secondary feeders is presented. The simulation results demonstrate the effectiveness and usefulness of the proposed methods.

Loss Minimizing Vector Control of Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기의 최소 손실 벡터제어)

  • Chung, Euihoon;Lee, Yongjae;Ha, Jung-Ik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.330-336
    • /
    • 2015
  • This paper presents a loss-minimizing vector control method for interior permanent magnet synchronous motor (IPMSM). Conventionally, maximum torque per ampere (MTPA) control, which minimizes copper loss, has been widely used in industry. Iron loss, however, is not considered in MTPA control. In this paper, the loss model, including iron loss and copper loss, is derived to further reduce drive loss. The loss-minimizing vector controller is implemented based on the loss model. The controller generates optimal current vectors according to the operating conditions. The performance and validity of the proposed method are proved by experimental results through comparison with conventional methods.

A Study on the Power Loss Simulation of Inverter and Converter for Elevator (승강기용 전력변환장치의 IGBT 전력손실에 관한 연구)

  • Cho, Su-Eog
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.116-123
    • /
    • 2014
  • In case of power electronics, th power loss and EMI noise of IGBT is different depends on a adopting technology with the same power rating. To reduce the EMI noise, we could increase the resistance of gate. But in this case, the power loss of IGBT is increased, In this paper, we simulated the power loss of IGBT with the speed profile of elevator by the changing IGBT type, the voltage between gate and emitter, the resistance of gate in converter and inverter for elevator. To optimize the power electronics with the satisfied life time, It is necessary that we calculate the power loss and the rise of temperature in IGBT with the adopting technology type, the resistence of gate, the voltage between gate and emitter.

A Study on the Power Loss Simulation of IGBT for HVDC Power Conversion System

  • Cho, Su Eog
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_1
    • /
    • pp.411-419
    • /
    • 2021
  • In this study, IGBT_Total_Loss and DIODE_Total_Loss were used to analyze the slope of the junction temperature for each section for temperature and duty variables in order to simply calculate the junction temperature of the power semiconductor (IGBT). As a result of the calculation, IGBT_Max_Junction_Temp and DIODE_Max_Junction_Temp form a proportional relationship with temperature for each duty. This simulation data shows that the power loss of a power semiconductor is calculated in a complex manner according to the current dependence index, voltage dependence index, and temperature coefficient. By applying the slope for each condition and section, the junction temperature of the power semiconductor can be calculated simply.