• 제목/요약/키워드: Loss Model of the induction motor

검색결과 22건 처리시간 0.021초

계통(系統)의 안전성(安全性) 제어(制御)를 고려(考慮)한 동적(動的) 전압안정도(電壓安定度)에 관(關)한 연구(硏究) (A Study on the Dynamic Voltage Stability Considering the Power System Security Control)

  • 이근준;황종영;이길순;정태호;김건중;김용배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.54-60
    • /
    • 1994
  • The cause of black out of Tokyo Power in 1987 has been identified as the voltage stability problem. After this event many researchers has been interested in voltage stability or voltage collapse phenomena. The voltage instability is different Com the transient stability in the sense of reactive power mismatch and the long duration time. In this study, we developed efficient tool for analyze and control the dynamic voltage instability. To analize specific condition of dynamic voltage stability, quasi-dynamic simulation method is developed. To provide proper mathmatical model for dynamic voltage stability, generator, SVC, OLTC, induction motor models are introducted. To provide specified dynamic voltage stability, the authors considered to use reactive loss function(${\partial}Q/{\partial}p_L$) as reactive power facility control index. This program was tested and identified its usefulness in real KEPCO system.

  • PDF

Control and Analysis of an Integrated Bidirectional DC/AC and DC/DC Converters for Plug-In Hybrid Electric Vehicle Applications

  • Hegazy, Omar;Van Mierlo, Joeri;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.408-417
    • /
    • 2011
  • The plug-in hybrid electric vehicles (PHEVs) are specialized hybrid electric vehicles that have the potential to obtain enough energy for average daily commuting from batteries. The PHEV battery would be recharged from the power grid at home or at work and would thus allow for a reduction in the overall fuel consumption. This paper proposes an integrated power electronics interface for PHEVs, which consists of a novel Eight-Switch Inverter (ESI) and an interleaved DC/DC converter, in order to reduce the cost, the mass and the size of the power electronics unit (PEU) with high performance at any operating mode. In the proposed configuration, a novel Eight-Switch Inverter (ESI) is able to function as a bidirectional single-phase AC/DC battery charger/ vehicle to grid (V2G) and to transfer electrical energy between the DC-link (connected to the battery) and the electric traction system as DC/AC inverter. In addition, a bidirectional-interleaved DC/DC converter with dual-loop controller is proposed for interfacing the ESI to a low-voltage battery pack in order to minimize the ripple of the battery current and to improve the efficiency of the DC system with lower inductor size. To validate the performance of the proposed configuration, the indirect field-oriented control (IFOC) based on particle swarm optimization (PSO) is proposed to optimize the efficiency of the AC drive system in PHEVs. The maximum efficiency of the motor is obtained by the evaluation of optimal rotor flux at any operating point, where the PSO is applied to evaluate the optimal flux. Moreover, an improved AC/DC controller based Proportional-Resonant Control (PRC) is proposed in order to reduce the THD of the input current in charger/V2G modes. The proposed configuration is analyzed and its performance is validated using simulated results obtained in MATLAB/ SIMULINK. Furthermore, it is experimentally validated with results obtained from the prototypes that have been developed and built in the laboratory based on TMS320F2808 DSP.