• Title/Summary/Keyword: Losartan

Search Result 45, Processing Time 0.028 seconds

Effects of Glipizide on the Pharmacokinetics of Losartan after Oral and Intravenous Administration in Rats (흰쥐에서 글리피지드가 로살탄의 약물동태에 미치는 영향)

  • Yoo, Jin-Wook;Choi, Jin-Seok;Choi, Jun-Shik
    • YAKHAK HOEJI
    • /
    • v.55 no.3
    • /
    • pp.240-246
    • /
    • 2011
  • The present study was to investigate the effect of glipizide on the pharmacokinetics of losartan in rats. Losartan was administered intravenously (3 mg/kg) and orally (9 mg/kg) in the presence and absence of glipizide (0.3 and 1 mg/kg) to rats. The pharmacokinetic parameters of losartan were significantly altered by the presence of glipizide compared with the control group (given losartan alone). Presence of glipizide significantly (p<0.05, 0.3 mg/kg) increased the area under the plasma concentration-time curve (AUC) of losartan by 48.2% and peak plasma concentration ($C_{max}$) of losartan by 47.4%. Consequently, the absolute bioavailability (AB%) of losartan in the presence of glipizide was 38%, which was enhanced significantly (p<0.05) compared to that in the oral control group (25%). The relative bioavailability (RB%) of losartan increased by 1.18- to 1.48-fold in the presence of glipizide. However, there was no significant change in the peak plasma concentration ($T_{max}$) and terminal half-life ($T_{1/2}$) of losartan in the presence of glipizide. In contrast, glipizide did not affect the pharmacokinetics of intravenous losartan. In conclusion, the presence of glipizide significantly enhanced the oral bioavailability of losartan, implying that glipizide might be mainly to inhibit the cytochrome P450 (CYP) 2C9-mediated metabolism, resulting in reducing gastrointestinal and/or hepatic first-pass metabilism of losartan rather than in reducing P-glycoprotein-mediated efflux and renal elimination of losartan. Concurrent use of glipizide with losartan should require close monitoring for potential drug interactions.

Effect of Naringin on the Bioavailability of Losartan in Rats (흰쥐에서 나린진이 로살탄의 생체이용율에 미치는 영향)

  • Lee, Chong-Ki;Choi, Jun-Shik
    • YAKHAK HOEJI
    • /
    • v.53 no.5
    • /
    • pp.259-264
    • /
    • 2009
  • The present study was to investigate the effect of naringin, a flavonoid, on the pharmacokinetics of losartan in rats. Pharmacokinetic parameters of losartan in rats were determined after an oral administration of losartan (9 mg/kg) in the presence or absence of naringin (0.5, 2.5 and 10 mg/kg). The pharmacokinetic parameters of losartan were significantly altered by the presence of naringin compared with the control group (given losartan alone). Presence of naringin significantly (p<0.05, 2.5 mg/kg; p<0.01, 10 mg/kg) increased the area under the plasma concentration?time curve (AUC) of losartan by 43.7~63.0% and peak plasma concentration ($C_{max}$) of losartan by 31.7~45.5%. Consequently, the absolute bioavailability (AB) of losartan in the presence of naringin was 43.8~62.9%, which was enhanced significantly (p<0.05, p<0.01) compared to that in the oral control group (22.4%). The relative bioavailability (R.B.) of losartan increased by 1.44- to 1.63-fold in the presence of naringin. However, there was no significant change in the peak plasma concentration ($T_{max}$) and terminal half-life ($t_{1/2}$) of losartan in the presence of naringin. In conclusion, the presence of naringin significantly enhanced the oral bioavailability of losartan, implying that presence of naringin might be mainly effective to inhibit the cytochrome P450 (CYP)3A-mediated metabolism, resulting in reducing gastrointestinal and hepatic first-pass metabilism and Pglycoprotein (P-gp)-mediated efflux of losartan in small intestine. Concurrent use of naringin or naringin-containing dietary supplement with losartan should require close monitoring for potential drug interactions.

Losartan Inhibits Vascular Smooth Muscle Cell Proliferation through Activation of AMP-Activated Protein Kinase

  • Kim, Jung-Eun;Choi, Hyoung-Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.299-304
    • /
    • 2010
  • Losartan is a selective angiotensin II (Ang II) type 1 ($AT_1$) receptor antagonist which inhibits vascular smooth muscle cells (VSMCs) contraction and proliferation. We hypothesized that losartan may prevent cell proliferation by activating AMP-activated protein kinase (AMPK) in VSMCs. VSMCs were treated with various concentrations of losartan. AMPK activation was measured by Western blot analysis and cell proliferation was measured by MTT assay and flowcytometry. Losartan dose- and time-dependently increased the phosphorylation of AMPK and its downstream target, acetyl-CoA carboxylase (ACC) in VSMCs. Losartan also significantly decreased the Ang II- or 15% FBS-induced VSMC proliferation by inhibiting the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. Compound C, a specific inhibitor of AMPK, or AMPK siRNA blocked the losartan-induced inhibition of cell proliferation and the $G_0/G_1$ cell cycle arrest. These data suggest that losartan-induced AMPK activation might attenuate Ang II-induced VSMC proliferation through the inhibition of cell cycle progression.

Effects of Losartan on Catecholamine Release in the Isolated Rat Adrenal Gland

  • Noh, Hae-Jeong;Kang, Yoon-Sung;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.327-335
    • /
    • 2009
  • The aim of this study was to determine whether losartan, an angiotensin II (Ang II) type 1 ($AT_1$) receptor could influence the CA release from the isolated perfused model of the rat adrenal medulla. Losartan (5${\sim}$50 ${\mu}$M) perfused into an adrenal vein for 90 min produced dose- and time-dependent inhibition of the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM, a direct membrane depolarizer), DMPP (100 ${\mu}$M) and McN-A-343 (100 ${\mu}$M). Losartan failed to affect basal CA output. Furthermore, in adrenal glands loaded with losartan (15 ${\mu}$M) for 90 min, the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}$M, an activator of L-type $Ca^{2+}$ channels), cyclopiazonic acid (10 ${\mu}$M, an inhibitor of cytoplasmic $Ca^{2+}$ -ATPase), veratridine (100 ${\mu}$M, an activator of $Na^+$ channels), and Ang II (100 nM) were markedly inhibited. However, at high concentrations (150${\sim}$300 ${\mu}$M), losartan rather enhanced the CA secretion evoked by ACh. Collectively, these experimental results suggest that losartan at low concentrations inhibits the CA secretion evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization from the rat adrenal medulla, but at high concentration it rather inhibits ACh-evoked CA secretion. It seems that losartan has a dual action, acting as both agonist and antagonist to nicotinic receptors of the rat adrenal medulla, which might be dependent on the concentration. It is also thought that this inhibitory effect of losartan may be mediated by blocking the influx of both $Na^+$ and $Ca^{2+}$ into the rat adrenomedullary chromaffin cells as well as by inhibiting the $Ca^{2+}$ release from the cytoplasmic calcium store, which is thought to be relevant to the $AT_1$ receptor blockade, in addition to its enhancement of the CA release.

Losartan Reduces Remodeling and Apoptosis in an Adriamycin-Induced Cardiomyopathy Rat Model

  • Hyeon A Kim;Kwan Chang Kim;Hyeryon Lee;Young Mi Hong
    • Journal of Chest Surgery
    • /
    • v.56 no.5
    • /
    • pp.295-303
    • /
    • 2023
  • Background: The use of Adriamycin (ADR), also known as doxorubicin, as a chemotherapy agent is limited by its detrimental adverse effects, especially cardiotoxicity. Recent studies have emphasized the crucial role of angiotensin II (Ang-II) in the development of ADR-induced cardiomyopathy. This study aimed to explore the potential cardioprotective effects of losartan in a rat model of ADR-induced cardiomyopathy. Methods: Male Sprague-Dawley rats were randomly divided into 3 groups: a control group (group C), an ADR-treated group (ADR 5 mg/kg/wk for 3 weeks via intraperitoneal injections; group A), and co-treatment of ADR with losartan group (same dose of ADR and losartan; 10 mg/kg/day per oral for 3 weeks; group L). Western blot analysis was conducted to demonstrate changes in brain natriuretic peptide, collagen 1, tumor necrosis factor (TNF)-α, interleukin-6, matrix metalloproteinase (MMP)-2, B-cell leukemia/lymphoma (Bcl)-2, Bcl-2-associated X (Bax), and caspase-3 protein expression levels in left ventricular (LV) tissues from each group. Results: Losartan administration reduced LV hypertrophy, collagen content, and the expression of pro-inflammatory factors TNF-α and MMP-2 in LV tissue. In addition, losartan led to a decrease in the expression of the pro-apoptotic proteins Bax and caspase-3 and an increase in the expression of the anti-apoptotic protein Bcl-2. Moreover, losartan treatment induced a reduction in the apoptotic area compared to group A. Conclusion: In an ADR-induced cardiomyopathy rat model, co-administration of ADR with losartan presented cardioprotective effects by attenuating LV hypertrophy, pro-inflammatory factors, and apoptosis in LV tissue.

Losartan Modifies Nitric Oxide-related Vasorelaxation in Isolated Aorta of Spontaneously Hypertensive Rat (선천성 고혈압흰쥐 적출대동맥에서 Nitric Oxide와 관련된 이완 반응에 Losartan이 미치는 영향)

  • Park, Bong-Gee;Han, Hyung-Soo;Kim, Choong-Young
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.3
    • /
    • pp.337-342
    • /
    • 1994
  • It is well known that angiotensin converting enzyme inhibitors(ACEIs) increase endothelium-dependent relaxation in aortic strips of spontaneously hypertensive rats(SHR) and this increase in relaxation may be due to altered endothelial nitric oxide breakdown. But there are few studies on the effect of the angiotensin II receptor blocker on the nitric oxide-mediated relaxation. So we attempted to investigate the effect of angiotensin II receptor blocker on the nitric oxide-dependent relaxation in isolated aorta of SHR. Two week-treatment of losartan (30 mg/kg/day) increased the acetylcholine$(10^{-9}\;to\;10^{-5}\;M)$-and histamine$(10^{-8}\;to\;10^{-4}\;M)$-induced relaxation in endothelium intact strips but 90 minutes-treatment of losartan $(10^{-4}\;M)$ showed no increase in relaxation. The phenylephrine $(10^{-7}\;M)$-induced contraction, repeated every 2 hours, was diminished gradually following lipopolysaccharide (LPS)-treatment $(100\;{\mu}g/ml)$ but there was no significant difference in enalapril- and losartan-treated group compared with control group. These results suggest that activity of the endothelial constitutive NO synthase may be changed by chronic treatment of angiotensin II receptor blockers and ACEIs but angiotensin II antagonist and ACEI have no effect on the inducible NO synthase activity in the isolated aorta of SHR

  • PDF

Changes of Bax, Bcl-2, CCR-2, MCP-1, and TGF-β1 genes in the left ventricle of spontaneously hypertensive rat after losartan treatment

  • Lee, Hyeryon;Kim, Kwan Chang;Hong, Young Mi
    • Clinical and Experimental Pediatrics
    • /
    • v.62 no.3
    • /
    • pp.95-101
    • /
    • 2019
  • Purpose: Increased apoptosis was recently found in the hypertrophied left ventricle of spontaneously hypertensive rats (SHRs). Although the available evidence suggests that apoptosis can be induced in cardiac cells by various insults including pressure overload, cardiac apoptosis appears to result from an exaggerated local production of angiotensin in adult SHRs. Altered expressions of Bcl associated X (Bax), Bcl-2, chemokine receptor (CCR)-2, monocyte chemoattractant protein (MCP)-1, transforming growth factor $(TGF)-{\beta}1$, phosphorylated extracellular signal-regulated kinases (PERK), and connexin 43 proteins, and kallikrein mRNA were investigated to explore the effects of losartan on the SHR model. Methods: Twelve-week-old male rats were grouped as follows: control (C), SHR (hypertension: H), and losartan (L; SHRs were treated with losartan [10 mg/kg/day] for 5 weeks). Western blot and reverse transcription polymerase chain reaction assays were performed. Results: Expression of Bax, CCR-2, MCP-1, $TGF-{\beta}1$, PERK, and connexin 43 proteins, and kallikrein mRNA was significantly increased in the H group compared to that in the C group at weeks 3 and 5. Expression of Bax, CCR-2, MCP-1, $TGF-{\beta}1$, and connexin 43 proteins and kallikrein mRNA was significantly decreased after losartan treatment at week 5. PERK protein expression was significantly decreased after losartan treatment at weeks 3 and 5. Bcl-2 protein expression was significantly decreased in the H group compared to that in the C group at weeks 3 and 5. Conclusion: Losartan treatment reduced expression of Bax, CCR-2, MCP-1, $TGF-{\beta}1$, PERK, and connexin 43 proteins, and kallikrein mRNA in SHRs, along with decreased inflammation and apoptosis.

Cucumber (Cucumis sativus L.) Fruit and Combination with Losartan Attenuate the Elevation of Blood Pressure in Hypertensive Rats Induced by Angiotensin II

  • Tomi Hendrayana;Klaudia Yoana;I Ketut Adnyana;Elin Yulinah Sukandar
    • Journal of Pharmacopuncture
    • /
    • v.26 no.4
    • /
    • pp.298-306
    • /
    • 2023
  • Objectives: Cucumis sativus L. (C. sativus) is vegetable commonly used for managing blood pressure and often consumed in combination with standard antihypertensive therapy, despite lack of scientific evidence supporting their use. Combination of herbs and standard medication could have positive or negative effects. Therefore, this study aimed to evaluate the antihypertensive activity of C. sativus and the combined effect with losartan in the hypertensive rat model induced by angiotensin II. Angiotensin II is a component of the renin-angiotensin-aldosterone system that, upon binding to its receptor, constricts blood vessels leading to elevation of blood pressure. Methods: In an antihypertensive study, rats received C. sativus orally at doses of 9, 18, 27, and 36 mg/kg (full dose); while in a combination study, animals received losartan 2.25 mg/kg combined by either with C. sativus 9 or 18 mg/kg. The standards group received losartan 2.25 mg/kg or 4.5 mg/kg (full dose). Results: Blood pressure was measured using the tail-cuff method. C. sativus significantly attenuated angiotensin II-induced hypertension as observed in groups receiving C. sativus at 9, 18, 27, and 36 mg/kg at 30 minutes after induction showed the average change (Δ) of systolic blood pressure (SBP) and diastolic blood pressure (DBP) with respect to time zero were 28.8/18.3, 24.8/15.8, 22.8/15.5, and 11.5/9.0 mmHg, respectively. Whereas the average change (Δ) of SBP and DBP in the rats receiving the combination of half doses of C. sativus and losartan were 8.8/9.0 mmHg, respectively. These diminished effects were better than a full dose of C. sativus and comparable with a full dose of losartan (6.5/7.8 mmHg). Conclusion: The present findings indicate that C. sativus dose-dependently blocks blood pressure elevation induced by angiotensin II. The combination of half dose of C. sativus and losartan has an additive effect in lowering blood pressure.

Effects of age on angiotensin II response and antagonistic activity of losartan in rat aorta and liver

  • Jung, Yi-Sook;Lee, Sung-Hou;Shin, Hwa-Sup
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.462-468
    • /
    • 1996
  • The present study was undertaken to investigate the effects of age on angiotensin II (AII) response and antagonistic activity of losartan using aortic rings and liver homogenates from rats ranging in age from 0.7 to 20 months. Whether the endothelium was present or not, the maximum contractile response to AII decreased with age. Removal of the endothelium enhanced AII-induced maximum contraction and these endothelial effects seemed to be due to endothelium-derived relaxing factor (EDRF) in all ages. Equilibrium binding studies demonstrated an age-related decrease in maximum binding $(B_{max})$ with little change in binding affinity $(K_d)$. In rat aorta, the extent of losartan-induced parallel shifts $(K_B)$ in AII concentration-response curves was not significantly different between ages. In addition, $IC_{50}$ value of losartan in competition binding was not changed with age in rat liver homogenates. These results suggest that the potency of losartan is not altered with age in rat aorta and liver, although AII-induced contractile response and the maximum AII binding decreased significantly with age.

  • PDF

Bioequivalence of LosartanTM Tablet to CozzarTM Tablet (Losartan Kalium 50 mg) (코자 정(로자탄 칼륨 50 mg)에 대한 로자르탄 정의 생물학적동등성)

  • Kim, Yong-Won;Park, Wan-Su;Kim, Sung-Su;Seo, Ji-Hyung;Cho, Sung-Hee;Lee, Heon-Woo;Rew, Jae-Hwan;Lee, Kyung-Tae
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.2
    • /
    • pp.131-136
    • /
    • 2006
  • The purpose of the present study was to evaluate the bioequivalence of two losartan tablets, $Cozaar^{TM}$ tablet (MSD Korea. Co., Ltd., Seoul, Korea, reference drug) and $Losartan^{TM}$ tablet (DaeWon Pharm. Co., Ltd., Korea, test drug), according to the guidelines of Korea Food and Drug Administration (KFDA). Twenty-four healthy male Korean volunteers received two tablets at the losartan kalium dose of 100 mg in a $2\;{\time}\;2$ crossover study. There was a one-week washout period between the doses. Plasma concentrations of losartan were monitored by an LC-MS/MS for over a period of 12 hr after the administration. $AUC_t$ (the area under the plasma concentration-time curve from time zero to 12 hr) was calculated by the linear trapezoidal rule method. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were compiled from the plasma concentration-time data. Analysis of variance was carried out using logarithmically transformed $AUC_t$ and $C_{max}$. No significant sequence effect was found for all of the bioavailability parameters indicating that the crossover design was properly performed. The 90% confidence intervals of the $AUC_t$ ratio and the $C_{max}$ ratio for $Cozaar^{TM}/Losartan^{TM}$ were $log\;0.97{\sim}log\;1.12\;and\;log\;0.93{\sim}log\;1.23$, respectively. These values were within the acceptable bioequivalence intervals of $log\;0.80{\sim}log\;1.25$. Taken together, our study demonstrated the bioequivalence of $Cozaar^{TM}$ and $Losartan^TM$ with respect to the rate and extent of absorption.