• 제목/요약/키워드: Lorentz System

검색결과 73건 처리시간 0.025초

0.7MJ SMES Coil 설계 및 제작 (Design and Manufacture for the 0.7MJ SMES Coil)

  • 김해종;성기철;조전욱;이언웅;류강식;류경우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 A
    • /
    • pp.140-142
    • /
    • 1998
  • The major part of SMES (Superconducting Magnetic Energy Storage) system consist of the superconducting coil, cryostat and current lead, power converter. The 0.7MJ SMES coil was a design and manufacture by using SMES device that we developed a design code. A SMES coil was wound with high winding tension in order to prevent wire motion from Lorentz force. This paper described optimum design for the SMES coil.

  • PDF

THE RELATIONS BETWEEN NULL GEODESIC CURVES AND TIMELIKE RULED SURFACES IN DUAL LORENTZIAN SPACE 𝔻31

  • Unluturk, Yasin;Yilmaz, Suha;Ekici, Cumali
    • 호남수학학술지
    • /
    • 제41권1호
    • /
    • pp.185-195
    • /
    • 2019
  • In this work, we study the conditions between null geodesic curves and timelike ruled surfaces in dual Lorentzian space. For this study, we establish a system of differential equations characterizing timelike ruled surfaces in dual Lorentzian space by using the invariant quantities of null geodesic curves on the given ruled surfaces. We obtain the solutions of these systems for special cases. Regarding to these special solutions, we give some results of the relations between null geodesic curves and timelike ruled surfaces in dual Lorentzian space.

자기 흡인식 부상 원리에 기초한 비접촉식 서피스 액추에이터의 초정밀 범용 스테이지에의 적용 가능성 (Feasibility Study of General-purpose Precision Stage Using A Novel Contact-Free Surface Actuator Based on Magnetic Suspension Technology)

  • 정광식;이상헌;백윤수
    • 대한기계학회논문집A
    • /
    • 제26권3호
    • /
    • pp.452-460
    • /
    • 2002
  • The precision stage using a novel contact-free planar actuator based on magnetic farces, magnetized force and Lorentz farce, is suggested. In the promising magnetic structure, the mover is driven directly without any transmission mechanism, and doesn't need any auxiliary driver for its posture calibration. Then it is estimated that the proposed operating principle is very suitable for work requiring high accuracy and cleanness, or general-purpose nano-stage. In this paper, we discuss a driving principle of the planar system including the magnetic force generation mechanism, a framework for the force model, governing characteristics of the levitated plate, and a planar motion control of the constructed prototype. And experimental results are given to verify the derived theoretical model and a feasibility of the system.

자기등가회로 모델링법에 의한 LPM 정추력 해석 (Calculating the static thrust of LPM by magnetic equivalent circuit modelling method)

  • 김동회;김광헌;김영민;황종선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.227-232
    • /
    • 2003
  • Usually, the thrust of a Linear Pulse Motor(LPM) is calculated by magnetic equivalent circuit modelling method. Analytical thrust deviation exists to calculating magnetic flux density by using Permeance Modelling Method, Finite Element Method, and Velocity Electric Motive Force Method. For calculating accuracy thrust by using these every method, the thrust is calculated and compared by Lorentz Force Method, Magnetic Coenergy Method, and Maxwell correspondence force Method. And that becomes important factor at the comparison of each capacity and parameter of motor. So this study wants to compare and analyze measurement data and calculating data of the static thrust of LPM. and then we can get more accuracy method, calculating the static thrust of LPM.

  • PDF

DYNAMIC FORMATION AND ASSOCIATED HEATING OF A MAGNETIC LOOP ON THE SUN

  • Tetsuya, Magara;Yeonwoo, Jang;Donghui, Son
    • 천문학회지
    • /
    • 제55권6호
    • /
    • pp.215-220
    • /
    • 2022
  • To seek an atmospheric heating mechanism operating on the Sun we investigated a heating source generated by a downflow, both of which may arise in a magnetic loop dynamically formed on the Sun via flux emergence. Since an observation shows that the illumination of evolving magnetic loops under the dynamic formation occurs sporadically and intermittently, we performed a magnetohydrodynamic simulation of flux emergence to obtain a high-cadence simulated data, where temperature enhancement was identified at the footpoint of an evolving magnetic loop. Unlike a rigid magnetic loop with a confined flow in it, the evolving loop in a low plasma β atmosphere is subjected to local compression by the magnetic field surrounding the loop, which drives a strong supersonic downflow generating an effective footpoint heating source in it. This may introduce an energy conversion system to the magnetized atmosphere of the Sun, in which the free magnetic energy causing the compression via Lorentz force is converted to the flow energy, and eventually reduced to the thermal energy. Dynamic and thermodynamic states involved in the system are explained.

Optimization of outer core to reduce end effect of annular linear induction electromagnetic pump in prototype Generation-IV sodium-cooled fast reactor

  • Kwak, Jaesik;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1380-1385
    • /
    • 2020
  • An annular linear induction electromagnetic pump (ALIP) which has a developed pressure of 0.76 bar and a flow rate of 100 L/min is designed to analysis end effect which is main problem to use ALIP in thermohydraulic system of the prototype generation-IV sodium-cooled fast reactor (PGSFR). Because there is no moving part which is directly in contact with the liquid, such as the impeller of a mechanical pump, an ALIP is one of the best options for transporting sodium, considering the high temperature and reactivity of liquid sodium. For the analysis of an ALIP, some of the most important characteristics are the electromagnetic properties such as the magnetic field, current density, and the Lorentz force. These electromagnetic properties not only affect the performance of an ALIP, but they additionally influence the end effect. The end effect is caused by distortion to the electromagnetic field at both ends of an ALIP, influencing both the flow stability and developed pressure. The electromagnetic field distribution in an ALIP is analyzed in this study by solving Maxwell's equations and using numerical analysis.

가스차단기 최적설계를 위한 $SF_6$ 아크 플라즈마 CAE 해석 (CAE Analysis of $SF_6$ Arc Plasma for a Gas Circuit Breaker Design)

  • 이종철;안희섭;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.365-368
    • /
    • 2002
  • The design of industrial arc plasma systems is still largely based on trial and error although the situation is rapidly improving because of the available computational power at a cost which is still fast coming down. The desire to predict the behavior of arc plasma system, thus reducing the development cost, has been the motivation of arc research. To interrupt fault current, the most enormous duty of a circuit breaker, is achieved by separating two contacts in a interruption medium, $SF_{6}$ gas or air etc., and arc plasma is inevitably established between the contacts. The arc must be controlled and interrupted at an appropriate current zero. In order to analyze arc behavior in $SF_{6}$ gas circuit breakers, a numerical calculation method combined with flow field and electromagnetic field has been developed. The method has been applied to model arc generated in the Aachen nozzle and compared the results with the experimental results. Next, we have simulated the unsteady flow characteristics to be induced by arcing of AC cycle, and conformed that the method can predict arc behavior in account of thermal transport to $SF_{6}$ gas around the arc, such as increase of arc voltage near current zero and dependency of arc radius on arc current to maintain constant arc current density.

  • PDF

Fundamental Aspects of the Unbalance Condition for the Forces involved in Rail Gun Recoil

  • Banerjee, Arindam;Radcliffe, P.J.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권3호
    • /
    • pp.317-324
    • /
    • 2014
  • The forces involved in the firing of the electromagnetic rail gun may be analyzed from Amperian, Maxwellian and Einsteinian approaches. This paper discusses these different paradigms with regard to rail gun performance modeling relating to the generation and balance of the forces caused by the currents and their induced magnetic fields. Recent experimental work on model rail guns, where the armature is held static, shows very little recoil upon the rails, thereby indicating a possible violation of Newton's Third Law of Motion. Dynamic testing to show this violation, as suggested by the authors in an earlier paper, has inherent technical difficulties. A purpose-built finite element C/C++ simulator that models that suspended rail gun firing action shows a net force acting upon the entire rail gun system. A new effect in physics, universal in scope, is thus indicated: a current circulating in an asymmetric and rigid circuit causes a net force to act upon the circuit for the duration of the current. This conclusion following from computer simulation based upon Maxwellian electrodynamics as opposed to the more modern relativistic quantum electrodynamics needs to be supported by unambiguous experimental validation.

Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field

  • Arefi, M.;Rahimi, G.H.;Khoshgoftar, M.J.
    • Smart Structures and Systems
    • /
    • 제9권5호
    • /
    • pp.427-439
    • /
    • 2012
  • The present paper deals with the analytical solution of a functionally graded piezoelectric (FGP) cylinder in the magnetic field under mechanical, thermal and electrical loads. All mechanical, thermal and electrical properties except Poisson ratio can be varied continuously and gradually along the thickness direction of the cylinder based on a power function. The cylinder is assumed to be axisymmetric. Steady state heat transfer equation is solved by considering the appropriate boundary conditions. Using Maxwell electro dynamic equation and assumed magnetic field along the axis of the cylinder, Lorentz's force due to magnetic field is evaluated for non homogenous state. This force can be employed as a body force in the equilibrium equation. Equilibrium and Maxwell equations are two fundamental equations for analysis of the problem. Comprehensive solution of Maxwell equation is considered in the present paper for general states of non homogeneity. Solution of governing equations may be obtained using solution of the characteristic equation of the system. Achieved results indicate that with increasing the non homogenous index, different mechanical and electrical components present different behaviors along the thickness direction. FGP can control the distribution of the mechanical and electrical components in various structures with good precision. For intelligent properties of functionally graded piezoelectric materials, these materials can be used as an actuator, sensor or a component of piezo motor in electromechanical systems.

자기 펄스 성형장치의 성형력에 영향을 미치는 설계 파라미터에 관한 연구 (Study on Design Parameters that Affect the Forming Force of the Magnetic Pulse Forming Device)

  • 이만기;이화조;김진호
    • 한국자기학회지
    • /
    • 제25권3호
    • /
    • pp.79-82
    • /
    • 2015
  • 자기 펄스 성형장치란, 고강도 자기장을 이용하는 소성가공법이다. 자기 펄스 설형장치는 기존의 프레스 공정에 비해 가공 후 성형품의 표면 품질이 좋고 공정이 단순하며 가공속도가 높아 가공시간이 매우 짧은 장점을 가지고 있다. 본 연구에서는 자기 펄스 성형장치의 각각 변수들이 성형력에 미치는 영향력을 분석하기 위해 파라미터 연구를 수행하였다. 자기 펄스 성형장치의 각각 변수들은 인가전압, 캐패시터 용량, 코일의 턴 수로 나누어 지며, 각각의 변수들이 성형압력에 미치는 영향력을 분석하는데 상용전자기 해석 프로그램인 MAXWELL을 이용하였다.