• Title/Summary/Keyword: Loop operations

Search Result 153, Processing Time 0.023 seconds

Fully Programmable Memory BIST for Commodity DRAMs

  • Kim, Ilwoong;Jeong, Woosik;Kang, Dongho;Kang, Sungho
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.787-792
    • /
    • 2015
  • To accomplish a high-speed test on low-speed automatic test equipment (ATE), a new instruction-based fully programmable memory built-in self-test (BIST) is proposed. The proposed memory BIST generates a highspeed internal clock signal by multiplying an external low-speed clock signal from an ATE by a clock multiplier embedded in a DRAM. For maximum programmability and small area overhead, the proposed memory BIST stores the unique sets of instructions and corresponding test sequences that are implicit within the test algorithms that it receives from an external ATE. The proposed memory BIST is managed by an external ATE on-the-fly to perform complicated and hard-to-implement functions, such as loop operations and refresh-interrupts. Therefore, the proposed memory BIST has a simple hardware structure compared to conventional memory BIST schemes. The proposed memory BIST is a practical test solution for reducing the overall test cost for the mass production of commodity DDRx SDRAMs.

A Study on the Effect of Material Choice on the Lay Mapping of Skirts - Using 4D-Box Design Program - (소재에 따른 스커트의 Lay Mapping 효과에 관한 연구 - 4D-Box 디자인 프로그램을 이용하여 -)

  • Bang, Soo-Ran
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.10
    • /
    • pp.65-77
    • /
    • 2008
  • The purpose of this study is to analyze the correlation between the density, the Count and the width of cross section in 2D function through comparison the difference of simulated fabrics based on the various yarns, and to compare the 3D effect by Lay Mapping of diverse fabrics. The method of research is to weave the eight fabrics composed of cotton, linen, worsted, slender yarn, loop, $m{\acute{e}}lange$, woolen, and yarn twist with Hi-Tex program, and to practice 3D mapping with Hi-Print program. As a mapping object, the flared skirt which is a basic costume item is selected. As a result, the thickness of yarn in CAD system was fixed by the width of cross section rather than Count, especially by the width of core section not including the fluff section. The type of yarn such as cotton yarn, linen yarn, and worsted had effect on the shape of texture, but had few interrelations with dimension. In the case of 3D mapping, the textural characteristic and the dimension were presented precisely, whereas there were several limitations. First, the thickness of tissue has not been represented. Secondly, the effect of texture such as fuzzy look, loop was not expressed on the skirt outline including sideline and hemline. Thirdly, the difference of silhouette was not distinct. The common point in 2D and 3D operations is that the representation of texture is relatively accurate and that is difficult to measure and manifest of thickness, the side. For more professional digitalizing in fashion industry, above all in the domain of 3D, it must be supplement the subdivided and differentiated mapping process according to the texture, deviating from the existing analog-based organization which has to designate the form and silhouette suitable for tissue.

Boundary condition coupling methods and its application to BOP-integrated transient simulation of SMART

  • Jongin Yang;Hong Hyun Son;Yong Jae Lee;Doyoung Shin;Taejin Kim;Seong Soo Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1974-1987
    • /
    • 2023
  • The load-following operation of small modular reactors (SMRs) requires accurate prediction of transient behaviors that can occur in the balance of plants (BOP) and the nuclear steam supply system (NSSS). However, 1-D thermal-hydraulics analysis codes developed for safety and performance analysis have conventionally excluded the BOP from the simulation by assuming ideal boundary conditions for the main steam and feed water (MS/FW) systems, i.e., an open loop. In this study, we introduced a lumped model of BOP fluid system and coupled it with NSSS without any ideal boundary conditions, i.e., in a closed loop. Various methods for coupling boundary conditions at MS/FW were tested to validate their combination in terms of minimizing numerical instability, which mainly arises from the coupled boundaries. The method exhibiting the best performance was selected and applied to a transient simulation of an integrated NSSS and BOP system of a SMART. For a transient event with core power change of 100-20-100%, the simulation exhibited numerical stability throughout the system without any significant perturbation of thermal-hydraulic parameters. Thus, the introduced boundary-condition coupling method and BOP fluid system model can expectedly be employed for the transient simulation and performance analysis of SMRs requiring daily load-following operations.

Mooring chain fatigue analysis of a deep draft semi-submersible platform in central Gulf of Mexico

  • Jun Zou
    • Ocean Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.171-210
    • /
    • 2024
  • This paper focuses on the rigorous and holistic fatigue analysis of mooring chains for a deep draft semi-submersible platform in the challenging environment of the central Gulf of Mexico (GoM). Known for severe hurricanes and strong loop/eddy currents, this region significantly impacts offshore structures and their mooring systems, necessitating robust designs capable of withstanding extreme wind, wave and current conditions. Wave scatter and current bin diagrams are utilized to assess the probabilistic distribution of waves and currents, crucial for calculating mooring chain fatigue. The study evaluates the effects of Vortex Induced Motion (VIM), Out-of-Plane-Bending (OPB), and In-Plane-Bending (IPB) on mooring fatigue, alongside extreme single events such as 100-year hurricanes and loop/eddy currents including ramp-up and ramp-down phases, to ensure resilient mooring design. A detailed case study of a deep draft semi-submersible platform with 16 semi-taut moorings in 2,500 meters of water depth in the central GoM provides insights into the relative contributions of wave scatter diagram, VIMs from current bin diagram, the combined stresses of OPB/IPB/TT and extreme single events. By comparing these factors, the study aims to enhance understanding and optimize mooring system design for safety, reliability, and cost-effectiveness in offshore operations within the central GoM. The paper addresses a research gap by proposing a holistic approach that integrates findings from various contributions to advance current practices in mooring design. It presents a comprehensive framework for fatigue analysis and design optimization of mooring systems in the central GoM, emphasizing the critical importance of considering environmental conditions, OPB/IPB moments, and extreme single events to ensure the safety and reliability of mooring systems for offshore platforms.

Dynamic Model for Open Innovation Network (개방형 혁신 네트워크의 동태적 모형)

  • Park, Chulsoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.40 no.1
    • /
    • pp.5-19
    • /
    • 2015
  • Literatures on open innovation have two major limitations. First, either on a firm level or on an industry level did they analyze the open innovation issues. The results of a firm's innovation can be diffused through the whole network and the firm can learn back from the network knowledge. Prior literatures did not consider the feedback loop among firms and network in which the firms are involved. Second, most open innovation research had a static perspective on firm's innovation performance. Since the diffusion, spill-over and learning among network members are involved over time, the open innovation is intrinsically dynamic. From the dynamic perspective, we can appreciate the fundamental attributes of the open innovation network which involves diverse firms, research institutes, and universities. In order to overcome the limitations, we suggest a dynamic model for open innovation network. We build an agent-based model which consists of heterogeneous firms. The firms are connected through a scale-free network which is formed by preferential attachment. Through the diverse scenario of simulation, we collect massive data on the firm level and analyze them both on firm and industry level. From the analysis, we found that, on industry level, the overall performance of open innovation increases as the internal research capability, absorptive capacity, and learning curve coefficient increase. Noticeably, as the deprecation rate of knowledge increases, the variability of knowledge increases. From the firm level analysis, we found that the industry-level variables had a significant effect on the firm's innovation performance lasting through all the time, whereas the firm-level variables had only on the early phase of innovation.

An Adaptive Setting Method for the Overcurrent Relay of Distribution Feeders Considering the Interconnected Distributed Generations

  • Jang Sung-Il;Kim Kwang-Ho;Park Yong-Up;Choi Jung-Hwan;Kang Yong-Cheol;Kang Sang-Hee;Lee Seung-Jae;Oshida Hideharu;Park Jong-Keun
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.357-365
    • /
    • 2005
  • This research investigates the influences of distributed generations (DG), which are interconnected to the bus by the dedicated lines, on the overcurrent relays (OCR) of the neighboring distribution feeders and also proposes a novel method to reduce the negative effects on the feeder protection. Due to the grid connected DG, the entire short-circuit capacity of the distribution networks increases, which may raise the current of the distribution feeder during normal operations as well as fault conditions. In particular, during the switching period for loop operation, the current level of the distribution feeder can be larger than the pickup value for the fault of the feeder's OCR, thereby causing the OCR to perform a mal-operation. This paper proposes the adaptive setting algorithm for the OCR of the distribution feeders having the neighboring dedicated feeders for the DG to prevent the mal-operations of the OCR under normal conditions. The proposed method changes the pickup value of the OCR by adapting the power output of the DG monitored at the relaying point in the distribution network. We tested the proposed method with the actual distribution network model of the Hoenggye substation at the Korea Electric Power Co., which is composed of five feeders supplying the power to network loads and two dedicated feeders for the wind turbine generators. The simulation results demonstrate that the proposed adaptive protection method could enhance the conventional OCR of the distribution feeders with the neighboring dedicated lines for the DG.

Optimal Investment Strategy for Research and Development Considering Dynamic Complexity (동태적 복잡성을 고려한 최적의 연구개발 투자 전략)

  • Son, Jiyoon;Kim, Hyun Jung;Kim, Soo Wook
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.40 no.4
    • /
    • pp.19-33
    • /
    • 2015
  • Recently, interest in research and development (R&D) investment decisions have increased among Korean domestic enterprises. However, existing R&D investment studies only focused on government R&D investment policies while only a few studies investigated firm level R&D investment. Prior literatures also overlooked the feedback loop between R&D investment and firm performance. Therefore, this paper identifies a system dynamics model for R&D investment decision making in domestic electronics firms. The conceptual model is derived from R&D investment-related theories found in bodies of literature on company performance, enterprise activity, and market maturity. This study investigates the dynamic feedback between R&D activities and sales using the system dynamics model. In other words, the system dynamics model is used to explain the change in the closed feedback circulation structure in R&D investment activities including technology development, production process, and marketing that subsequently result in sales increase and re-investment into R&D from the generated revenues. There are two major results. First, a similar ratio of investment on technology development and production process derives the higher company sales. Second, regardless of market maturity, marketing investment ratio positively affects sales and R&D budget growth. This study provides a system dynamics model to find the optimal ratio for R&D investment and suggests managerial strategic implications on electronic firm R&D investment decision making under market maturity condition.

A Radio-Frequency PLL Using a High-Speed VCO with an Improved Negative Skewed Delay Scheme (향상된 부 스큐 고속 VCO를 이용한 초고주파 PLL)

  • Kim, Sung-Ha;Kim, Sam-Dong;Hwang, In-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.23-36
    • /
    • 2005
  • PLLs have been widely used for many applications including communication systems. This paper presents a VCO with an improved negative skewed delay scheme and a PLL using this VCO. The proposed VCO and PLL are intended for replacing traditional LC oscillators and PLLs used in communication systems and other applications. The circuit designs of the VCO and PLL are based on 0.18um CMOS technology with 1.8V supply voltage. The proposed VCO employs subfeedback loops using pass-transistors and needs two opposite control voltages for the pass transistors. The subfeedback loops speed up oscillation depending on the control voltages and thus provide a high oscillation frequency. The two voltage controls have opposite frequency gain characteristics and result in low phase-noise. The 7-stage VCO in 0.18um CMOS technology operates from $3.2GHz\~6.3GHz$ with phase noise of about -128.8 dBc/Hz at 1MHz frequency onset. For 1.8V supply voltage, the current consumption is about 3.8mA. The proposed PLL has dual loop-filters for the proposed VCO. The PLL is operated at 5GHz with 1.8V supply voltage. These results indicate that the proposed VCO can be used for radio frequency operations replacing LC oscillators. The circuits have been designed and simulated using 0.18um TSMC library.

Development of a system dynamics computer model to simulate the operational effects of the new environmental technology certification system (환경신기술인증제도의 운영효과를 모의하기 위한 시스템다이내믹스 컴퓨터 모델의 개발)

  • Kim, Taeyoung;Park, Suwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.2
    • /
    • pp.105-114
    • /
    • 2020
  • In this study, based on the System Dynamics (SD) methodology, the interrelationship between the factors inherent in the operation of the New Technology Certification System (NTCS) in Korea was identified by a causal map containing a feedback loop mechanism in connection with 'new technology development investment', 'commercialization of new technology', and 'sales by new technology'. This conceptualized causal map was applied to the simulation of the operations of the New Excellent Technology and Environmental Technology Verification System (NET&ETV) run by the Ministry of Environment among various NTCSs in Korea. A SD computer simulation model was developed to analyze and predict the operational performance of the NET&ETV in terms of key performance indices such as 'sales by new technology'. Using this model, we predicted the future operational status the NET&ETV and found a policy leverage that greatly influences the operation of the NET&ETV. Also the sensitivity of the key indicators to changes in the external variables in the model was analyzed to find policy leverage.

Control of a Bidirectional Z-Source Inverter for Electric Vehicle Applications in Different Operation Modes

  • Ellabban, Omar;Mierlo, Joeri Van;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.120-131
    • /
    • 2011
  • This paper proposes two control strategies for the bidirectional Z-source inverters (BZSI) supplied by batteries for electric vehicle applications. The first control strategy utilizes the indirect field-oriented control (IFOC) method to control the induction motor speed. The proposed speed control strategy is able to control the motor speed from zero to the rated speed with the rated load torque in both motoring and regenerative braking modes. The IFOC is based on PWM voltage modulation with voltage decoupling compensation to insert the shoot-through state into the switching signals using the simple boost shoot-through control method. The parameters of the four PI controllers in the IFOC technique are designed based on the required dynamic specifications. The second control strategy uses a proportional plus resonance (PR) controller in the synchronous reference frame to control the AC current for connecting the BZSI to the grid during the battery charging/discharging mode. In both control strategies, a dual loop controller is proposed to control the capacitor voltage of the BZSI. This controller is designed based on a small signal model of the BZSI using a bode diagram. MATLAB simulations and experimental results verify the validity of the proposed control strategies during motoring, regenerative braking and grid connection operations.