• Title/Summary/Keyword: Loop impedance

Search Result 168, Processing Time 0.023 seconds

$Co_2$ Corrosion Mechanism of Carbon Steel in the Presence of Acetate and Acetic Acid

  • Liu, D.;Fu, C.Y.;Chen, Z.Y.;Guo, X.P.
    • Corrosion Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.227-232
    • /
    • 2007
  • The corrosion behavior of carbon steel (N80) in carbon dioxide saturated 1%NaCl solution with and without acetic acid or acetate was investigated by weight-loss test, electrochemical methods (polarization curve, Electrochemical impedance spectroscopy). The major objective is to make clear that the effect of acetic acid and acetate on the corrosion of carbon steel in $Co_2$ environments. The results indicate that either acetic acid or acetate accelerates cathodic reducing reaction, facilitates dissolution of corrosion products on carbon steel, and so promotes the corrosion rate of carbon steel in carbon dioxide saturated NaCl solution. All Nyquist Plots are consisting of a capacitive loop in high frequency region, an inductive loop in medial frequency region and a capacitive arc in low frequency region. The high frequency capacitive loop, medial frequency inductive loop and low frequency capacitive arc are corresponding to the electron transfer reaction, the formation/adsorption of intermediates and dissolution of corrosion products respectively. All arc of the measured impedance reduced with the increase of the concentration of Ac-, especially HAc. However, the same phenomenon is not notable after reducing pH value by adding HCl. HAc is a stronger proton donor and can be reduced directly by electrochemical reaction firstly. Ac- can't participate in electrochemistry reaction directly, but $Ac^-$ an hydrate easily to create HAc in carbon dioxide saturated environments. HAc is as catalyst in $Co_2$ corrosion. As a result, the corrosion rate was accelerated in the presence of acetate ion even pH value of solution increased.

Electrochemical Impedance Study for Selective Dissolution of a Cu-Zn Alloy

  • Hoshi, Y.;Tabei, K.;Shitanda, I.;Itagaki, M.
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.311-313
    • /
    • 2016
  • The anodic dissolution behavior of copper and brass in an electrolyte solution of 0.5M NaCl containing 0.5 mM $NaHCO_3$ was investigated by electrochemical impedance spectroscopy. The Nyquist plots of the copper impedance described a small loop in the high-frequency range and a large locus in the low-frequency range. Additionally, the features of the impedance spectrum of the brass were similar to those of the copper. This indicates that the copper-enriched layer formed on the brass surface due to the selective dissolution of the zinc from the surface. In addition, the rest potential and the anodic polarization curve for each sample were measured in order to discuss the selective dissolution of the zinc from the brass surface.

Modified droop control scheme for load sharing amongst inverters in a micro grid

  • Patel, Urvi N.;Gondalia, Dipakkumar;Patel, Hiren H.
    • Advances in Energy Research
    • /
    • v.3 no.2
    • /
    • pp.81-95
    • /
    • 2015
  • Microgrid, which can be considered as an integration of various dispersed resources (DRs), is characterized by number of DRs interfaced through the power electronics converters. The microgrid comprising these DRs is often operated in an islanded mode. To minimize the cost, reduce complexity and increase reliability, it is preferred to avoid any communication channel between them. Consequently, the droop control method is traditionally adopted to distribute active and reactive power among the DRs operating in parallel. However, the accuracy of distribution of active and reactive power among the DRs controlled by the conventional droop control approach is highly dependent on the value of line impedance, R/X i.e., resistance to reactance ratio of the line, voltage setting of inverters etc. The limitations of the conventional droop control approach are demonstrated and a modified droop control approach to reduce the effect of impedance mis-match and improve the time response is proposed. The error in reactive power sharing is minimized by inserting virtual impedance in line with the inverters to remove the mis-match in impedance. The improved time response is achieved by modifying the real-power frequency droop using arctan function. Simulations results are presented to validate the effectiveness of the control approach.

NIC-Based Non-Foster Impedance Matching of a Resistively Loaded Vee Dipole Antenna (네거티브 임피던스 변환기에 기반을 둔 저항성 V 다이폴 안테나의 논 포스터 임피던스 매칭)

  • Yang, Hyemin;Kim, Kangwook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.7
    • /
    • pp.597-605
    • /
    • 2015
  • Negative impedance converter(NIC)-based non-Foster impedance matching is proposed for an electrically small antenna. The antenna considered in this work is a resistively loaded vee dipole(RVD) antenna, which has considerable reflection at the feed point because of its large negative input reactance. The non-Foster matching circuit built near the feed point consists of two-stage NIC circuit and a capacitor connected between the stages. The NIC is realized by using operational amplifiers(op-amps) and resistors. The circuit is designed by considering of the input impedance according to the finite open-loop gain of the practical NICs. The stability test of the impedance-matched RVD antenna is performed. The non- Foster matching circuit is implemented with the RVD antenna. The measured impedance demonstrates that the proposed non-Foster matching circuit effectively reduces the input reactance of the RVD antenna.

Identification and Damping of Resonances in Inverter-based Microgrids

  • Afrasiabi, Morteza;Rokrok, Esmaeel
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1235-1244
    • /
    • 2018
  • The application of shunt capacitor banks and underground cables typically induces resonance in power distribution systems. In this study, the propagation of resonance in a microgrid (MG) with inverter-based distributed generators (IBDGs) is investigated. If resonances are not properly damped, then the output current of the inverters may experience distortion via resonance propagation due to the adverse effect of resonances on MG power quality. This study presents a conceptual method for identifying resonances and related issues in multi-inverter systems. For this purpose, existing resonances are identified using modal impedance analysis. However, some resonances may be undetectable when this method is used. Thus, the resonances are investigated using the proposed method based on the frequency response of a closed-loop MG equivalent circuit. After analyzing resonance propagation in the MG, an effective virtual impedance damping method is used in the IBDG control system to damp the resonances. Results demonstrate the effectiveness of the proposed method in compensating for existing resonances.

Implementation of Active Impedance Based on Linear Motors (리니어 모터에 근거한 능동 임피던스 구현)

  • 이세한;송재복;김용일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.462-465
    • /
    • 1995
  • In this research a 2-dimensional motion producer based on two linear motors was developed. When the tester provides some motion through the level attached to the upper moving part of the motion producer, it provides the arbitrary intertia, damping and stiffness characteristics without actual change in physical structure of the motion producer. That is, the active impedance is implemented by controlling input currents supplied to the linear motors. A PID controller with feedforward loop was used to control the currents and pre-processing of input velocity and accleration singals from the encoder and the current singnal from the motor driver circuit are conducted to improve the performance.

  • PDF

Compliant motion controllers for kinematically redundant manipulators

  • Park, Jonghoon;Chung, Wan-Kyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.456-459
    • /
    • 1995
  • The problem of compliant motion control using a redundant manipulator is addressed in this article. Specifically, a hybrid-control type and impedance-control type controllers are extended to general redundant manipulators based on the kinematically decomposed and geometrically compatible modeling of its joint space. In the case of the hybrid controller, it leads to the linear and decoupled closed-loop dynamics in the three motion spaces, that is the motion-controlled, force-controlled, and the null motion-controlled spaces of the redundant manipulator. When the proposed impedance controller is applied, the decoupled impedance models in three motion spaces are obtained. The superiority of the proposed controllers is verified with the numerical experiments.

  • PDF

Development of Joint Controller and Collision Detection Methods for Series Elastic Manipulator of Relief Robot (구호로봇용 연성 매니퓰레이터를 위한 조인트 제어 및 충돌감지 알고리즘)

  • Jung, Byung-jin;Kim, Tae-Keun;Won, Geon;Kim, Dong Sup;Hwang, Junghun
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.157-163
    • /
    • 2018
  • This paper deals with the development and application of control algorithms for series elastic relief robots for rescue operations in harsh environment like disasters or battlefield. The joint controller applied in this paper has a cascade structure combining inner loop for torque control and outer loop for position control. The torque loop contains feedforward and feedback controller and disturbance observer for independent, decentralized joint control. The effect of the elastic component and motor dynamics are treated as the nonlinear disturbance and compensated with the disturbance observer of torque controller. For the collision detection, Band Designed Disturbance Observer is configured to recognize/respond to external disturbance robustly in the continuously changing environment. The controller is applied to a 7-dof series elastic manipulator to evaluate the torque tracking and collision detection/response performance.

Design of Implantable Rectangular Spiral Antenna for Wireless Biotelemetry in MICS Band

  • Lee, Jae-Ho;Seo, Dong-Wook;Lee, Hyung Soo
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.204-211
    • /
    • 2015
  • For this study, we designed an implantable rectangular spiral antenna for medical biotelemetry in the Medical Implant Communications Service band (402 MHz to 405 MHz). The designed antenna has a U-shaped loop for impedance matching. The antenna impedance is easily adjusted by controlling the shape and length of the U-shaped loop. Significant design parameters were studied to understand their effects on the antenna performance. To verify the potential of the antenna for the desired applications, we fabricated a prototype and measured its performance in terms of the resonant characteristics and gain radiation patterns of the antenna. In the testing phase, the prototype antenna was embedded in human skin tissue-emulating gel, which was developed to simulate a real operation environment. The measured resonant characteristics show good agreement with the simulations, and the -10 dB frequency band is within the range of 398 MHz to 420 MHz. The antenna exhibits a maximum gain of -22.26 dBi and an antenna efficiency of 0.215%.

Hydrodynamic and Oxygen Effects on Corrosion of Cobalt in Borate Buffer Solution (Borate 완충용액에서 코발트의 부식에 대한 대류와 산소의 영향)

  • Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.5
    • /
    • pp.437-444
    • /
    • 2014
  • The electrochemical corrosion and passivation of Co-RDE in borate buffer solution was studied by Potentiodynamic and electrochemical impedance spectroscopy. The mechanisms of both the active dissolution and passivation of cobalt and the hydrogen evolution in reduction reaction were hypothetically established while utilizing the Tafel slope, the rotation speed of Co-RDE, impedance data and the pH dependence of corrosion potential. Based on the EIS data, an equivalent circuit was suggested. In addition, the electrochemical parameters for specific anodic dissolution regions were carefully measured. An induction loop in Nyquist plot measured at the open-circuit potential was observed in the low frequency, and this could be attributed to the adsorption-desorption behavior in the corrosion process.