• Title/Summary/Keyword: Longterm Variations of Water Quality

Search Result 2, Processing Time 0.019 seconds

Long-Term Variations of Water Quality in Jinhae Bay (진해만의 장기 수질변동 특성)

  • Kwon, Jung-No;Lee, Jangho;Kim, Youngsug;Lim, Jae-Hyun;Choi, Tae-Jun;Ye, Mi-Ju;Jun, Ji-Won;Kim, Seulmin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.4
    • /
    • pp.324-332
    • /
    • 2014
  • In order to reveal the long-term variations of water quality in Jinhae Bay, water qualities had been monitored at 9 survey stations of Jinhae Bay during 2000~2012. The surface and bottom waters concentrations of chemical oxygen demand (COD), dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and chlorophyll-a (Chl.-a) were higher at the survey stations of Masan Bay than the stations of other Bays. Especially, station 1 which is located at the inner area of Masan Bay had the highest values in the concentrations of COD, DIN, and Chl.-a because there were terrestrial pollutant sources near the station 1 and sea current had not well circulated in the inner area of Masan Bay. In factor analysis, the station 1 also had the highest factor values related to factors which increase organic matters and nutrients in surface and bottom waters of Masan Bay. However, the stations (st.5, st.6, st.7, st.8, and st.9) of other Bays had lower values of the factors. In time series analysis, the COD concentrations of the bottom waters at 8 stations except for station 1 distinctly decreased. However, the COD concentrations of the surface waters showed no distinct decrease trends at all stations. In the concentrations of nutrients (DIN and DIP) of both surface and bottom waters, there were tremendous decrease trends at all stations. Therefore, these distinct decrease trends of the COD in bottom waters and the nutrients in surface and bottom waters of Jinhae Bay could have been associated with water improvement actions such as TPLMS (total pollution load management system).

Nutrients and Chlorophyll Dynamics Along the Longitudinal Gradients of Daechung Reservoir (대청호에서 종적구배에 따른 영양염류 및 엽록소의 역동성)

  • Bae, Dae-Yeul;Yang, Eun-Chan;Jung, Seung-Hyun;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.285-293
    • /
    • 2007
  • The study was to determine zonal characteristics of nutrients and chlorophyll and evaluate their trophic relations in Daechung Reservoir. For this study, we compared longterm water quality data among three zones along with trophic state using 1993 to 2002 dataset, obtained from the Ministry of Environment, Korea. Total phosphorous (TP), Secchi depth (SD) and chlorophyll (CHL) showed typical longitudinal declines from the riverine to lacustrine zone, but total nitrogen (TN) was not evident. Largest seasonal variations in TP and CHL occurred during the summer monsoon from July to August. In the reservoir, ambient TN averaged 1.67 mg $L^{-1}$ and ratios of TN : TP averaged 88.04, indicating that nitrogen is not likely limited but phosphorus limitation was evident. Trophic State Index (TSI), based on CHL, TP, and SD, varied depending on the zones and seasons. Mean TSI (TP) in the riverine zone was 62 during the monsoon, indicating a hypertrophic condition, whereas the mean was 40 in the lacustrine, indicating a nearly oligotrophic. Values of TSI (CHL) showed maximum in the transition zone during the monsoon. The deviation analysis of TSI showed that about 65% of TSI (CHL)-TSI (TP) and TSI (CHL)-TSI (SD) values were less than zero and the lowest values were -42, indicating an effect of inorganic turbidity on algal growth in the reservoir. Correlation analysis of CHL vs. SD shewed greater correlation coefficient (p<0.001, r=-0.47) in the transition than other two zones (p<0.001, $r{\leq}-0.40$). Correlation analysis of TP vs. CHL was greatest in the lacustrine and TP was minimum in the lacustrine zone, indicating a lowest yield of algal biomass in the lacustrine. Overall data suggests that zonal response of chlorophyll yield at a given nutrient unit is clearly differed among the longitudinal gradients, so the management strategy such as cross sectional modelling should be provided in each zone.