• 제목/요약/키워드: Longitudinal strength

검색결과 818건 처리시간 0.02초

선체 선각구조의 최종 종강도 평가에 관한 연구 (On the Ultimate Longitudinal Strength Assessment of Ships' Hull Structure)

  • 이훈곤;이주성
    • 대한조선학회논문집
    • /
    • 제43권3호
    • /
    • pp.340-350
    • /
    • 2006
  • This paper is concerned with a practical guide for the ultimate longitudinal strength assessments of ships' hull structure. Rigorous non-linear structural analysis for three tanker models has been carried out to examine the ultimate strength behavior. Formula of estimating the ultimate longitudinal strength has been proposed which is modified with the results of non-linear finite element analysis of hull girders. Computational reliability and accuracy of the large-scale non-linear finite element analysis and the proposed simplified formula are verified through comparing their results with that of 1/3 scale frigate model test and DNVs program. Additionally, the ultimate longitudinal strength for ten tanker models is compared with those by the method specified in the 2nd Draft of common structural rule for tankers, which is being developed by IACS.

Influence of Longitudinal Arch of Foot on the Strength and Muscle Activity of the Abductor Hallucis in Subjects with and without Navicular Drop Sign

  • Jeon, In-Cheol
    • The Journal of Korean Physical Therapy
    • /
    • 제31권4호
    • /
    • pp.222-227
    • /
    • 2019
  • Purpose: This study examined the influence of longitudinal arch on the strength and muscle activity of the abductor hallucis in the standing position in subjects with and without navicular drop signs. Methods: A sample of 34 subjects with and without navicular drop signs between 22 and 28 years of age were enrolled in this study. The strength and muscle activity of the abductor hallucis was measured using a tensiometer. The Smart KEMA System and electromyography device was used on the subjects with and without navicular drop signs. Two groups were classified using the navicular drop test to identify the longitudinal arch of the foot. The strength of the abductor hallucis was evaluated in standing, both with and without an external arch support condition. The two-way mixed ANOVA was used. The level of statistical significance was set to ${\alpha}=0.05$. Results: The strength and muscle activity of the abductor hallucis in standing was significantly higher with external arch support than that without the external arch support in the group with navicular drop signs. There was no significant difference in the abductor hallucis strength and muscle activity with and without external arch support in the subjects without navicular drop signs. Conclusions: The strength and muscle activity of the abductor hallucis in standing can be influenced by the external arch support in the group with navicular drop signs. The strength measurement of the abductor hallucis in standing should be separately performed in conditions with and without longitudinal arch of foot.

Seismic performance of RC bridge piers reinforced with varying yield strength steel

  • Su, Junsheng;Dhakal, Rajesh Prasad;Wang, Junjie;Wang, Wenbiao
    • Earthquakes and Structures
    • /
    • 제12권2호
    • /
    • pp.201-211
    • /
    • 2017
  • This paper experimentally investigates the effect of yield strength of reinforcing bars and stirrups on the seismic performance of reinforced concrete (RC) circular piers. Reversed cyclic loading tests of nine-large scale specimens with longitudinal and transverse reinforcement of different yield strengths (varying between HRB335, HRB500E and HRB600 rebars) were conducted. The test parameters include the yield strength and amount of longitudinal and transverse reinforcement. The results indicate that the adoption of high-strength steel (HSS) reinforcement HRB500E and HRB600 (to replace HRB335) as longitudinal bars without reducing the steel area (i.e., equal volume replacement) is found to increase the moment resistance (as expected) and the total deformation capacity while reducing the residual displacement, ductility and energy dissipation capacity to some extent. Higher strength stirrups enhance the ductility and energy dissipation capacity of RC bridge piers. While the product of steel yield strength and reinforcement ratio ($f_y{\rho}_s$) is kept constant (i.e., equal strength replacement), the piers with higher yield strength longitudinal bars are found to achieve as good seismic performance as when lower strength bars are used. When higher yield strength transverse reinforcement is to be used to maintain equal strength, reducing bar diameter is found to be a better approach than increasing the tie spacing.

Experimental investigation of longitudinal shear behavior for composite floor slab

  • Kataoka, Marcela N.;Friedrich, Juliana T.;El Debs, Ana Lucia H.C.
    • Steel and Composite Structures
    • /
    • 제23권3호
    • /
    • pp.351-362
    • /
    • 2017
  • This paper presents an experimental study on the behavior of composite floor slab comprised by a new steel sheet and concrete slab. The strength of composite slabs depends mainly on the strength of the connection between the steel sheet and concrete, which is denoted by longitudinal shear strength. The composite slabs have three main failures modes, failure by bending, vertical shear failure and longitudinal shear failure. These modes are based on the load versus deflection curves that are obtained in bending tests. The longitudinal shear failure is brittle due to the mechanical connection was not capable of transferring the shear force until the failure by bending occurs. The vertical shear failure is observed in slabs with short span, large heights and high concentrated loads subjected near the supports. In order to analyze the behavior of the composite slab with a new steel sheet, six bending tests were undertaken aiming to provide information on their longitudinal shear strength, and to assess the failure mechanisms of the proposed connections. Two groups of slabs were tested, one with 3000 mm in length and other with 1500 mm in length. The tested composite slabs showed satisfactory composite behavior and longitudinal shear resistance, as good as well, the analysis confirmed that the developed sheet is suitable for use in composite structures without damage to the global behavior.

철근비 변화에 따른 철근콘크리트 기둥의 거동에 관한 실험적 연구 (An Experimental Study on the Behavior of Reinforced Concrete Columns Subjected Longitudinal Steel Ratio.)

  • 조성찬;장정수;김광석;박진희;김윤용;한상훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.284-292
    • /
    • 1995
  • This paper is on experimental study on the behavior of reinforced concrete columns subjected to longitudinal steel ratio To investigate the effects of concrete strength and longitedinal steel ratio on the behavior of reinforced concrete columns. a series of tests were carried out for thirty-six tied reinforced concrete columns with a 100mm square cross section and three slendemess ratio of 15, 30 and 50. And To study and illustrate the change of the ultimate loads and that of displacements, two different concrete strength of 180,26kfg/$\textrm{cm}^2$, 819,36kfg/$\textrm{cm}^2$ and five different longitudinal steel ratio of 0.5, 1.0, 4.0, 5.7 and 10.3% were used. The boundary conditions at the ends were both hinged and the end eccentricities (17mm) were equal and of the same sign. While the ultimate load capacity of high-strength concrete column was much increased when the columns were short, that was not when the columns were slender. The effect of longitudinal steel ratio on the increased of ultimate load of column was more evident for slender columns than for short ones and the ultimate of longitudinal steel ratio were more pronounced with increasing concrete strength. The more inserted the longitudinal steel, the more increased the ultimate load, but the superabundance of longitudinal steel ratio over the limitation of maximum steel ratio in ACI code was used, it was showed that the ultimate load was rather decreased.

  • PDF

Web bend-buckling strength of plate girders with two longitudinal web stiffeners

  • Kim, Byung Jun;Park, Yong Myung;Kim, Kyungsik;Choi, Byung H.
    • Structural Engineering and Mechanics
    • /
    • 제69권4호
    • /
    • pp.383-397
    • /
    • 2019
  • More than one longitudinal web stiffener may be economical in the design of plate girders that have considerably high width-to-thickness ratio of webs. In this study, the bend-buckling strength of relatively deep webs with two horizontal lines of flat plate-shaped single-sided stiffeners was numerically investigated. Linear eigenvalue buckling analyses were conducted for specially selected hypothetical models of stiffened web panels, in which top and bottom junctions of a web with flanges were assumed to have simply supported boundary conditions. Major parameters in the analyses were the locations of two longitudinal stiffeners, stress ratios in the web, slenderness ratios and aspect ratios of web panels. Based on the application of assumptions on the combined locations of the two longitudinal web stiffeners, simplified equations were proposed for the bend-buckling coefficients and compared to the case of one longitudinal stiffener. It was found that bend-buckling coefficients can be doubled by adopting two longitudinal stiffeners instead of one longitudinal stiffener. For practical design purposes, additional equations were proposed for the required bending rigidity of the longitudinal stiffeners arranged in two horizontal lines on a web.

반복횡하중을 받는 철근콘크리트 원형 교각의 축방향철근 연결상세에 따른 강도저감 및 파괴거동 (Strength Degradation and Failure of Circular RC Bridge Columns with Longitudinal Steel Connection under Cyclic Lateral Load)

  • 이재훈;정철호;고성현;손혁수
    • 콘크리트학회논문집
    • /
    • 제16권1호
    • /
    • pp.111-124
    • /
    • 2004
  • 축방향철근의 연결상세에 따라 7개 그룹 총 21개의 원형나선철근 기둥 시험체를 제작하여 준정적 실험을 수행하였다. 축방향철근 연결상세(단일철근, 겹침이음 및 기계적연결), 심부구속철근비, 축력비 등을 주요 실험변수로 채택하였으며 실험결과 축방향철근 연결상세에 따라 다른 파괴거동을 나타내었고, 내진성능에서도 차이를 나타내었다. 축방향철근이 겹침이음된 시험체의 실험결과, 모든 축방향철근이 겹침이음된 시험체는 내진성능이 상당히 저하되는 것으로 나타났으나, 축방향철근의 $50\%$가 겹침이음된 시험체의 경우 제한적이지만 한정적인 연성능력을 나타내었다. 또한, 축방향철근을 커플러를 사용하여 기계적으로 연결한 시험체는 축방향철근이 단일철근으로 구성된 시험체와 유사한 파괴거동 및 강도저감거동을 나타내었다.

부직포를 삽입한 탄소섬유강화 복합적층판의 인장특성 평가 (Evaluation of Tensile Properties of Carbon Fiber Reinforced Composite Laminates with Non-Woven Carbon Mat)

  • 정성균
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.96-100
    • /
    • 1997
  • Tensile properties of carbon fiber reinforce composite laminates with non-woven carbon mat are evaluated in this paper. Composite laminates are made by inserting non-wovon carbon mat between layers, The specimens were cut and polished according to ASTM standard . Longitudinal and Transverse Young's modulus are obtained by tensile test. Young's moduli without non-woven carbon mat are compared with those with non-woven carbon mat. Longitudinal and Transverse tensile strength are also investigated. Experimental results show that the transverse Young's modulus of composite materials with non-woven carbon mat is about 10% higher than that of composite materials without non-woven carbon mat. Longitudinal tensile strength of composite materials with non-woven carbon mat is about 24% higher than that of composite materials without non-woven carbon mat. Transverse tensile strength and torughness also increase by inserting non-woven carbon mat between layers.

  • PDF

Long-term deflection of high-strength fiber reinforced concrete beams

  • Ashour, Samir A.;Mahmood, Khalid;Wafa, Faisal F.
    • Structural Engineering and Mechanics
    • /
    • 제8권6호
    • /
    • pp.531-546
    • /
    • 1999
  • The paper presents an experimental and theoretical study on the influence of steel fibers and longitudinal tension and compression reinforcements on immediate and long-term deflections of high-strength concrete beams of 85 MPa (12,300 psi) compressive, strength. Test results of eighteen beams subjected to sustained load for 180 days show that the deflection behavior depends on the longitudinal tension and compression reinforcement ratios and fiber content; excessive amount of compression reinforcement and fibers may have an unfavorable effect on the long-term deflections. The beams having the ACI Code's minimum longitudinal tension reinforcement showed much higher time-dependent deflection to immediate deflection ratio, when compared with that of the beams having about 50 percent of the balanced tension reinforcement. The results of theoretical analysis of tested beams and those of a parametric study show that the influence of steel fibers in increasing the moment of inertia of cracked transformed sections is most pronounced in beams having small amount of longitudinal tension reinforcement.

초기 재령 콘크리트의 종파 속도와 강도의 상관관계 (Correlation between Longitudinal Wave Velocity and Strength of Early-aged Concrete)

  • 이휘근;이광명;김동수
    • 콘크리트학회논문집
    • /
    • 제12권6호
    • /
    • pp.67-74
    • /
    • 2000
  • The usage of nondestructive testing on early-aged concrete leads to enhacned safty and allows effective scheduling of construction, thus making it possible to maximize the time and cost efficiencies. In this study, a reliable nondestructive strength evaluation method for early-aged concrete using the longitudinal wave velocity is proposed. Compression tests were performed to examine factors influencing the velocity-strength relationship of concrete, such as water-cement (w/c) ratio, fine aggregate ratio, curing temperature, and curing condition. The test results show that a change in the w/c ratio and curing temperature has minor effect on the velocity-strength relationship/ However, curing condition significantly influences the velocity-strength relationship of early-aged concrete. Moreover, the longitudinal wave velocity increases with decreasing fine aggregate ratio. It is concluded from this study that the strength evaluation of early-age concrete can be achieved by a nonlinear equation which considers the effects of curing condition and fine aggregate ratio.