• Title/Summary/Keyword: Longitudinal section

Search Result 545, Processing Time 0.03 seconds

Time-dependent creep analysis of a functionally graded beam with trapezoidal cross section using first-order shear deformation theory

  • Mirzaei, Manouchehr Mohammad Hosseini;Loghman, Abbas;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.567-576
    • /
    • 2019
  • Time-dependent creep analysis of a rotating functionally graded cantilever beam with trapezoidal longitudinal cross section subjected to thermal and inertia loading is investigated using first-order shear deformation theory (FSDT). The model described in this paper is a simple simulation of a turbine blade working under creep condition. The material is a metal based composite reinforced by a ceramic where the creep properties of which has been described by the Sherby's constitutive model. All mechanical and thermal properties except Poisson's ratio are assumed to be variable longitudinally based on the volume fraction of constituent. The principle of virtual work as well as first order shear deformation theory is used to derive governing equations. Longitudinal distribution of displacements and stresses are investigated for various volume fractions of reinforcement. Method of successive elastic solution is employed to obtain history of stresses and creep deformations. It is found that stresses and displacements approach their steady state values after 40000 hours. The results presented in this paper can be used for selection of appropriate longitudinal distribution of reinforcement to achieve the desired stresses and displacements.

Evaluation of Ductility for Bridge Piers Retrofitted by Stainless Steel Wire Mesh (스테인레스 스틸 와이어 메쉬 보강에 따른 교각의 연성능력 평가)

  • 김성훈;김대곤;이규남;김선호;김석희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.879-884
    • /
    • 2002
  • The objective of this study is to investigate the seismic capacity of the non-seismically detailed RC bridge piers before and after applying a seismic retrofitting method using stainless steel wire mesh. Total nine circular section RC piers were constructed. Different lap splice longitudinal reinforcement details were adapted for four specimens and various types of stainless steel wire mesh were applied for the remaining five specimens. Harmonic cyclic lateral load was applied on each specimen under a constant axial load. The test results indicated that the existing circular piers have low seismic capacity while the stainless steel wire mesh retrofitting method improves the seismic capacity considerably. In addition, test results revealed that the circular section piers could have a considerable amount of ductility if longitudinal bars are not lap-spliced in potential plastic hinge zone. Based on this experimental study it could be concluded that the seismic performance, that is ductility and energy absorption capacity, of the non-seismically detailed RC bridge piers would be increased by applying the stainless steel wire mesh seismic retrofitting method.

  • PDF

Slenderness effects on the simulated response of longitudinal reinforcement in monotonic compression

  • Gil-Martin, Luisa Maria;Hernandez-Montes, Enrique;Aschheim, Mark;Pantazopoulou, Stavroula J.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.369-386
    • /
    • 2006
  • The influence of reinforcement buckling on the flexural response of reinforced concrete members is studied. The stress-strain response of compression reinforcement is determined computationally using a large-strain finite element model for bars of varied diameter, length, and initial eccentricity, and a mathematical expression is fitted to the simulation results. This relationship is used to represent the response of bars in compression in a moment-curvature analysis of a reinforced concrete cross section. The compression bar may carry more or less force than a tension bar at a corresponding strain, depending on the relative influence of Poisson effects and bar slenderness. Several cross-section analyses indicate that, for the distances between stirrups prescribed in modern concrete codes, the influence of inelastic buckling of the longitudinal reinforcement on the monotonic moment capacity is very small and can be neglected in many circumstances.

CWR for Seoul Subway No 2 DangSan Bridge by ZLR (Zero Longitudinal Restraint) (종방향 활동체결구를 사용한 당산철교 장대레일화 사례)

  • Lee Duck Young;Kong Sun Yong;Kwon Soon Sub;Kim Eun
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.379-384
    • /
    • 2003
  • DangSan Bridge of Seoul Subway No 2 was rebuilt by safety reason. From Dec 1996 to Dec 1999 we were in charge of permanent way design of this rebuilt project. Especially we applied maintenance free system on the bridge by Cologne Egg alternative (ALT1) base plate and CWR (Continuous Welded Rail) by ZLR(Zero Longitudinal Restraint) for 125m (south approach section), 120m long(north approach section). This thesis generally introduce for CWR by ZLR which was first adapted CWR system in Korea.

  • PDF

Nonlinear Stability Analysis of Slender Concrete Columns (세장한 콘크리트 기둥의 비선형 안정 해석)

  • 김진근;양주경;김원근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.80-85
    • /
    • 1992
  • A nonlinear second-order analysis program that properly describes the nonlinear behavior of concrete was developed by using the layering technique. As the slenderness ratio of column is increased, the peaks of P-M curve lie remote from the section interaction diagram for the same eccentricities. But the peaks of P-M curve lie rather close to the section interaction diagram for very large eccentricities. In this study , the effects of compressive strength of concrete, longitudinal steel ratio, and yield strength of steel on second-order moment of concrete columns were analyzed. As the compressive strength of concrete and the yield strength of steel are increased, the ratio of peak axial force to maximum axial strength for concentrically loaded short column( Pu/Po) is decreased. But as the longitudinal steel ratio is increased, the ratio , Pu/Po increases.

  • PDF

Nail Withdrawal Behavior for Domestic Small Diameter Logs

  • Cha, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.104-108
    • /
    • 2002
  • Nail withdrawal tests were conducted on clear wood of domestic small diameter logs. Nails were driven into the cross and longitudinal sections of each specimen, then nail withdrawal tests were performed. Nail withdrawal loads are strongly dependent on the direction of nail positions. The average load values for the nail withdrawal both in cross section and longitudinal section are higher in high specific gravity (SG) wood of sawtooth oak (Quercus acutissima Carr.) than those in low SG wood of Korean red pine (Pinus densiflora Sieb. et Zucc.) and pitch pine (Pinus rigida Mill.). The average ratio of the nail withdrawal loads for side-grain and end-grain are higher in the low SG wood than that in the high SG of wood. Both linear and non-linear regression analyses were conducted on nail withdrawal load with SG, good correlations were obtained between nail withdrawal load and SG.

Track Longitudinal Irregularities at Bridge Deck Expansion Joint with ZLR(Zero Longitudinal Restraint) (활동체결장치가 설치된 교량상판 신축이음부에서의 궤도고저틀림에 미치는 영향)

  • Eom, Jong-Woo;Kim, Si-Chul;Kim, In-Jae
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1093-1098
    • /
    • 2007
  • In designing the high-speed railroad track, it is important to utilize appropriate track components to maintain uniform stiffness and ensure track alignment within the tolerance set for that system. In this regard, continuous welded rails (CWRs) were introduced to the Korean railways. Yet the installation of CWRs can result in an adverse impact due to the track/structure interaction on bridge sections yielding variations in the stiffness at the expansion joints. It may also impose additional axial force, generate excessive stress or deflection on track, and loosen the ballast at the ends as a bridge deck contracts or expands owing to a thermally-induced dynamic response. The risk is even greater in a long bridge deck, resulting in track longitudinal irregularities, deteriorating passenger's comfort, and increasing maintenance efforts. This study evaluates the performance of ZLR and their impact on track longitudinal irregularities through the track measuring results on a test section installed the ZLR in order to minimize the thermally-induced responses and the maintenance efforts for the high speed railway bridges.

  • PDF

Hysteretic Behavior of Retrofitted RC Bridge Piers with Lap Spliced Longitudinal Steels (주철근 겹침이음 및 보강된 RC교각의 이력거동)

  • 이대형;정영수;박창규;박진영;송희원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.121-126
    • /
    • 2003
  • The objective of this research is to evaluate of seismic performance for reinforced concrete bridge piers with lap splices of longitudinal reinforcement steels using predicting of nonlinear hysteric behavior. For the purpose, enhanced analytical trilinear hystretic model has been proposed to simulate the force-displacement hysteretic curve of RC bridge piers under repeated reversal loads. The moment capacity and corresponding curvature in the plastic hinge have been determined, and the enhanced hysteretic behavior model by five different kinds of branches has been proposed for modeling the stiffness variation of RC section under cyclic loading. The strength and stiffness degradation index are introduced to compute the hysteretic curve for various confinement steel ratios, In addition, the modified curvature factor has been introduced to forecast of seismic performance of longitudinal steel lap spliced and retrofitted specimens. The results of this research will be useful to predict of seismic performance for longitudinal steel with lap spliced and its retrofitted specimens.

  • PDF

Effects of longitudinal conduction on the performance of heat transfer surfaces (유동방향의 열전도가 전열면의 성능에 미치는 영향)

  • Park, Byung-Kyu;Hong, Taek;Park, Sang-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.561-569
    • /
    • 1999
  • The effects of longitudinal heat conduction on the performance of heat transfer surfaces are investigated by using a single-blow method. In the transient testing method for determining the heat transfer characteristics, exponential inlet temperature variations are made by using screen-mesh heater with small time constant and low frontal velocities of the test section, and the experimentally determined inlet temperature profile is used as the inlet fluid temperature condition. The effects of longitudinal heat conduction are negligible only if $\gamma^\act<0.05\;and \;N_{tu}\le3$ and should be considered if $N_{tu}\le3$ The test results ate compared with the existing theoretical and experimental data and the validity of this technique is confirmed by the good agreement.

  • PDF

Design Optimization of Wake Equalizing Duct Using CFD (CFD를 이용한 Wake Equalizing Duct의 최적설계)

  • Lee, Ho-Sung;Kim, Dong-Joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.42-47
    • /
    • 2011
  • In this paper, wake equalizing duct (WED) form optimization was carried out using computational fluid dynamics (CFD) techniques. A WED is a ring-shaped flow vane with a foil-type cross-section fitted to a hull in front of the upper propeller area. The main advantage of a WED is the power savings resulting from the uniformity of the velocity distribution on the propeller plane, a reduction in the flow separation at the aft-body, and lift generation with a forward force component on the foil section. This paper intends to evaluate these functions and find an optimized WED form for minimizing the viscous resistance and equalizing the wake distribution. In the optimization process, the study uses four WED parameters: the angle of the section, longitudinal location, and angles of the axes for the half rings against the longitudinal and transverse planes of the ship. KRISO 300K VLCC2 (KVLCC2) is chosen as an example ship to demonstrate the WED optimization. The optimization procedure uses genetic algorithms (GAs), a gradient-based optimizer for the refinement of the solution, and Non-dominated Sorting GA-II(NSGA-II) for Multiobjective Optimization. The results show that the optimized WED can reduce the viscous resistance at the expense of the uniformity of the wake distribution.