• Title/Summary/Keyword: Longitudinal resistance

Search Result 235, Processing Time 0.024 seconds

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF OVAL FIN-CIRCULAR TUBE HEAT EXCHANGER (타원형휜-원형관 열교환기의 강제대류 열전달 특성)

  • Kang, H.C.;Lee, J.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.1-6
    • /
    • 2010
  • The purpose of the present study is to investigate the flow resistance and the heat transfer characteristics of oval fin-tube heat exchanger. Six kinds of oval fin having the same fin area and different diameter ratio tested numerically. Test data for the heat transfer, pressure drop and fin temperature were shown and discussed. The pressure drop and heat transfer increased for increasing the oval fin diameter ratio(diameter of span-wise direction to diameter of longitudinal diameter) up to 50% and 45% respectively.

Effect of temperature gradient on track-bridge interaction

  • Kumar, Rakesh;Upadhyay, Akhil
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • Considerable longitudinal rail forces and displacements may develop in continuous welded rail (CWR) track on long-span bridges due to temperature variations. The track stability may be disturbed due to excessive relative displacements between the sleepers and ballast bed and the accompanied reduction in frictional resistance. For high-speed tracks, however, solving these problems by installing rail expansion devices in the track is not an attractive solution as these devices may cause a local disturbance of the vertical track stiffness and track geometry which will require intensive maintenance. With reference to temperature, two actions are considered by the bridge loading standards, the uniform variation in the rail and deck temperature and the temperature gradient in deck. Generally, the effect of temperature gradient has been disregarded in the interaction analysis. This paper mainly deals with the effect of temperature gradient on the track-bridge interaction with respect to the support reaction, rail stresses and stability. The study presented in this paper was not mentioned in the related codes so far.

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF OVAL FIN-CIRCULAR TUBE HEAT EXCHANGER (타원형휜-원형관 열교환기의 강제대류 열전달 특성)

  • Kang, H.C.;Lee, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.341-346
    • /
    • 2009
  • The purpose of the present study is to investigate the flow resistance and the heat transfer characteristics of oval fin-tube heat exchanger. Six kinds of oval fin having the same fin area and the different diameter ratio tested numerically. Test data for the heat transfer, pressure drop and fin temperature were shown and discussed. The pressure drop and heat transfer increased for increasing the oval fin diameter ratio(diameter of span-wise direction to diameter of longitudinal diameter) up to 50% and 45% respectively.

  • PDF

The Fiber Behavior in Solo-spun Yarn Formation and the Physical Properties of Solo-spun Yarn(2) (Solo spun 방적에서 섬유의 거동과 사의 물리적 성질(2))

  • 박수현;김승진
    • Textile Coloration and Finishing
    • /
    • v.13 no.6
    • /
    • pp.428-434
    • /
    • 2001
  • This study surveys the fiber behavior in yam formation and the Physical properties of Solo-spun yarn. The specimens were made by six types of Solo-spun rollers with fixed twist multiplier In the previous part, the physical properties such as yarn count, evenness, strength, and breaking elongation of these yams were compared with the properties of ring shun yarns and analysed with the mechanism of Solo-spun yarn formation. In the second part of this report, the abrasion resistance and hairiness were discussed wish respect to the micro yarn structures. The narrower the groove width of Solo-spun roller is, the more active the bulk fibers migration is. The Solo-spun film structure has two groups. One is shorter than the others one in longitudinal direction of yarn and has the same structure as ring-spun yarn, which is derided from the smooth zone on the surface of Solo-spun roller. The other one is longer than the former and there are the wrapping fibers. This part is derived from the conflicted grooves on the surface of Solo-spun troller.

  • PDF

The Fiber Behavior in Solo-spun Yarn Formation and the Physical Properties of Solo-spun Yarn(2) (Solo spun 방적에서 섬유의 거동과 사의 물리적 성질(2))

  • Park, Su Hyeon;Kim, Seung Jin
    • Textile Coloration and Finishing
    • /
    • v.13 no.6
    • /
    • pp.70-70
    • /
    • 2001
  • This study surveys the fiber behavior in yarn formation and the Physical properties of Solo-spun yarn. The specimens were made by six types of Solo-spun rollers with fixed twist multiplier In the previous part, the physical properties such as yarn count, evenness, strength, and breaking elongation of these yarns were compared with the properties of ring spun yarns and analysed with the mechanism of Solo-spun yarn formation. In the second part of this report, the abrasion resistance and hairiness were discussed with respect to the micro yarn structures. The narrower the groove width of Solo-spun roller is, the more active the bulk fiber migration is. The Solo-spun yarn structure has two groups. One is shorter than the other one in longitudinal direction of yarn and has the same structure as ring-spun yarn, which is derived from the smooth zone on the surface of Solo-spun roller. The other one is longer than the former and there are the wrapping fibers. This part is derived from the conflicted grooves on the surface of Solo-spun roller.

Design of RC dual system building using special seismic detail (내진특수상세를 적용한 RC 이중골조 건물의 설계)

  • Lee, Han-Seon;Ko, Dong-Woo;Sun, Sung-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.190-193
    • /
    • 2006
  • The definition of the Dual system is that the total seismic force resistance is to be provided by the combination of the moment frame and the shear walls or braced frames in proportion to their stiffness and the moment frame shall be capable of resisting at least 25% of the design force in Korean Building Code 2005 (KBC 2005). But, the definition of moment frame is ambiguous whether the moment frame include the imaginary columns in the shear wall (Case I) or include only the columns outside the shear wall (Case II). 60-story RC building was designed as dual system for Case I and Case II, and the required strength and reinforcement are compared. Moment and axial capacity of the shear wall of Case II decreased about 5% due to the absence of the column in the shear wall. The requirement of upper and bottom reinforcement of slab in Case II increased 13% and 40%, respectively, when compared to those of Case I. The required longitudinal reinforcement in columns for Case II is about 1.5 times larger than that of Case I.

  • PDF

Structural Characteristics of Damaged Offshore Tubular Members

  • Cho, Sang-Rai;Kwon, Jong-Sig;Kwak, Dong-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.1-7
    • /
    • 2010
  • Over the past few decades various experimental and theoretical investigations have been performed on offshore tubular members with regard to damage resistance and residual strength. Analysis of damaged tubular members requires a three-dimensional shell analysis for accurate results. Even though various commercial packages are available for this purpose, a beam-column analysis is preferred for offshore structural designs. In this paper, empirical equations are provided for a more accurate beam-column analysis of damaged tubes including the relationships between the lateral denting load and the depth of the dent, the rate of dent deepening due to increasing curvature and the longitudinal variation in the dent depth of damaged tubes. A design equation to predict the ultimate bending capacities of damaged offshore tubular members is also presented.

A study for CWR on Steel Plate Girder Railway Bridge without Ballast (무도상 교량 특성을 고려한 장대화 방안에 관한 연구)

  • Min Kyung-Joo;Nam Bo-Hyun;Ban Geol yeong
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.706-711
    • /
    • 2005
  • From the using CWR (Continuously Welded Rail) on steel plate girder bridges without ballast, axial forces are occurred from a temperature on CWR and girders. Because of the additional axial forces, studies in order to CWR and developments of devices are proceeding. The track system of steel plate girder bridges is poor. When CWR is used for the system, the resistance on sleepers is increased from a temperature. So it is increasing an effect on CWR and, for solving the effect, longitudinal forces for buckle are being decreased. It is possible that opposite cases can be happened and it is also compared and studied. Therefore, we present a reasonable model for analyzing CWR within the property of steel plate girder railway bridges in Korea. Furthermore, the results analyzed for stability is compared and evaluated with tests. Finally, a reasonable method for the installation of CWR on bridges without ballast is suggested.

  • PDF

Static measurement of magnetostriction of FeCoGe/phenol composites (FeCoGe/페놀 복합체의 정적 자기변형 측정)

  • Park, K.I.;Na, S.M.;Shin, K.H.;Lim, S.H.;SaGong, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.577-580
    • /
    • 2003
  • The magnetostriction of FeCoGe/phenol composites, which is one of the magnetostrictive materials, measured at the external magnetic field. The measurement was carried out using the electrical-resistance strain gage, the wheaten's Bridge for eliminating the unnecessary voltage, and the lock-in-amp for signal amplification and noise filtering. When the external magnetic field was applied in the longitudinal the samples, the maximum strain of 120ppm was taken with regard to the 10wt.% phenol composite. This results indicate that the FeCoGe/phenol composites can be useful as an actuator because it has larger stain than the other solid state actuators such as piezo electric materials.

  • PDF

Development of Thin-Film Type Strain Gauges for High-Temperature Applications (고온용 박막형 스트레인 게이지 개발)

  • Choi, Sung-Kyu;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1596-1598
    • /
    • 2002
  • This paper presents the characteristics of Ta-N thin-film strain gauges as high-temperature strain gauges, which were deposited on Si substrate by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-($4{\sim}16%$)$N_2$). These films were annealed for 1 hour in $2{\times}10^{-6}$ Torr vacuum furnace range $500{\sim}1000^{\circ}C$. The optimized conditions of Ta-N thin-film strain gauges were annealing condition($900^{\circ}C$, 1 hr.) in 8% $N_2$ gas flow ratio deposition atmosphere. Under optimum conditions, the Ta-N thin-films for strain gauges is obtained a high resistivity, ${\rho}$=768.93 ${\mu}{\Omega}cm$, a low temperature coefficient of resistance, TCR = -84 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF = 4.12.

  • PDF