• Title/Summary/Keyword: Longitudinal load transfer

Search Result 46, Processing Time 0.022 seconds

Pile-cap Connection Behavior between Hollow-Head Precast Reinforced Concrete Pile and Foundation (프리캐스트 철근콘크리트 중공 말뚝과 기초 접합부 반복가력 거동)

  • Bang, Jin-Wook;Jo, Young-Jae;Ahn, Kyung-Chul;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.71-77
    • /
    • 2019
  • Recently, most of the pile foundations have been applied as a method to transfer the heavy load of the structure to the ground with high bearing capacity. In this study, the pile-cap behavior between foundation and hollow-head precast reinforced concrete(HPC) pile reinforced with longitudinal rebar and filling concrete was experimentally evaluated depending on the cyclic load and reinforcement ratio. As the drift ratio increases, it was found that the cracks pattern and fracture behavior of two types of pile-cap specimens according to the reinforcement ratio were evaluated to be similar. As the reinforcement ratio increases by 1.77 times, the BS-H25 specimen increases the maximum load by 1.47 times compared to the BS-H19 specimen. However, the ductility ratio of positive and negative was decreased by 76% and 70% respectively. After the yielding of the pile-cap reinforcing rebars, the positive and negative stiffness of the all specimens were decreased by a range from 66% to 71% and a range from 54% to 57% respectively, and the average stiffness of BS-H25 specimen is 13% higher than that of BS-H19 specimen. The cumulative dissipated energy capacity of BS-H19 and BS-H25 specimen under ultimate load state is 5.5 times and 6.6 times higher than that of service load state.

Research on bearing characteristics of socket-spigot template supporting system

  • Guo, Yan;Hu, Chang-Ming;Lian, Ming
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.869-887
    • /
    • 2016
  • The socket-spigot template supporting system is widely used in engineering applications in China. As a newer type of support structure, there has been growing research interest in its bearing capacity. In this paper, four vertical bearing capacity tests were carried out on the basic mechanical unit frame of a socket-spigot template supporting system. The first goal was to explore the influence of the node semi-rigid degree and the longitudinal spacing of the upright tube on the vertical bearing capacity. The second objective was to analyze the displacement trend and the failure mode during the loading process. This paper presents numerical analysis of the vertical bearing capacity of the unit frames using the finite element software ANSYS. It revealed the relationship between the node semi-rigid degree and the vertical bearing capacity, that the two-linear reinforcement model of elastic-plastic material can be used to analyze the socket-spigot template supporting system, and, through node entity model analysis, that the load transfer direction greatly influences the node bearing area. Finally, this paper indicates the results of on-site application performance experiments, shows that the supporting system has adequate bearing capacity and stability, and comments on the common work performance of a socket and fastener scaffold.

Behavior of continuous RC deep girders that support walls with long end shear spans

  • Lee, Han-Seon;Ko, Dong-Woo;Sun, Sung-Min
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.385-403
    • /
    • 2011
  • Continuous deep girders which transmit the gravity load from the upper wall to the lower columns have frequently long end shear spans between the boundary of the upper wall and the face of the lower column. This paper presents the results of tests and analyses performed on three 1:2.5 scale specimens with long end shear spans, (the ratios of shear-span/total depth: 1.8 < a/h < 2.5): one designed by the conventional approach using the beam theory and two by the strut-and-tie approach. The conclusions are as follows: (1) the yielding strength of the continuous RC deep girders is controlled by the tensile yielding of the bottom longitudinal reinforcements, being much larger than the nominal strength predicted by using the section analysis of the girder section only or using the strut-and-tie model based on elastic-analysis stress distribution. (2) The ultimate strengths are 22% to 26% larger than the yielding strength. This additional strength derives from the strain hardening of yielded reinforcements and the shear resistance due to continuity with the adjacent span. (3) The pattern of shear force flow and failure mode in shear zone varies depending on the amount of vertical shear reinforcement. And (4) it is necessary to take into account the existence of the upper wall in the analysis and design of the deep continuous transfer girders that support the upper wall with a long end shear span.

Finite element analysis of shear critical prestressed SFRC beams

  • Thomas, Job;Ramaswamy, Ananth
    • Computers and Concrete
    • /
    • v.3 no.1
    • /
    • pp.65-77
    • /
    • 2006
  • This study reports the details of the finite element analysis of eleven shear critical partially prestressed concrete T-beams having steel fibers over partial or full depth. Prestressed concrete T-beams having a shear span to depth ratio of 2.65 and 1.59 and failing in the shear have been analyzed using 'ANSYS'. The 'ANSYS' model accounts for the nonlinear phenomenon, such as, bond-slip of longitudinal reinforcements, post-cracking tensile stiffness of the concrete, stress transfer across the cracked blocks of the concrete and load sustenance through the bridging of steel fibers at crack interface. The concrete is modeled using 'SOLID65'-eight-node brick element, which is capable of simulating the cracking and crushing behavior of brittle materials. The reinforcements such as deformed bars, prestressing wires and steel fibers have been modeled discretely using 'LINK8' - 3D spar element. The slip between the reinforcement (rebar, fibers) and the concrete has been modeled using a 'COMBIN39'-non-linear spring element connecting the nodes of the 'LINK8' element representing the reinforcement and nodes of the 'SOLID65' elements representing the concrete. The 'ANSYS' model correctly predicted the diagonal tension failure and shear compression failure of prestressed concrete beams observed in the experiment. The capability of the model to capture the critical crack regions, loads and deflections for various types of shear failures in prestressed concrete beam has been illustrated.

A Study on the Evaluation System of Jointed Concrete Pavement (콘크리트포장 줄눈부의 평가에 관한 기법연구)

  • Park, Je-Seon;Lee, Joo-Hyung;Hong, Chang-Woo;Lee, Jung-Ho
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.245-251
    • /
    • 1999
  • The joint in the concrete pavement provides a control against transverse or longitudinal cracking at slab, which may be caused by temperature or moisture variation during or after hydration. Without control of cracking, random crack may cause more serious distresses and result in structural or functional failure of pavement system. Sometimes, joint itself, purposed to control crack, may cause a distresses in joint due to its inherent weakness in structural integrity. Thus, the load transfer capacity in joint is very important for serviceability and durability. The purpose of this dissertation was to develop an evaluation system at joints of jointed concrete pavement using finite element analysis was performed using ILLI-SLAB program with a selected variables which might affect fairly to on the performance of transverse joints. The most significant variables were selected from precise analysis. It was concluded that the variables which most significantly affect to pavement deflections are the modulus of subgrade reaction(K) and the modulus of dowel/concrete interaction(G), and limiting criteria on the performance of joints at JCP at 300pci, 500,000 lb/in. respectively.

  • PDF

A Study on Dynamic Behaviour of Cable-Stayed Bridge by Vehicle Load (차량하중에 의한 사장교의 동적거동에 관한 연구)

  • Park, Cheun Hyek;Han, Jai Ik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1299-1308
    • /
    • 1994
  • This paper is considered on the dynamic behavior and the dynamic impact coefficient on the cable-stayed bridge under the vehicle load. The method of static analysis, that is, the transfer matrix method is used to get influence values about displacements, section forces of girder and cable forces. Gotten influence values were used as basic data to analyse dynamic behavior. This paper used the transfer matrix method because it is relatively simpler than the finite element method, and calculating speed of computer is very fast and the precision of computation is high. In the process of dynamic analysis, the uncoupled equation of motion is derived from simultaneous equation of the motion of cable-stayed bridge and vehicle travelling by using mode shape, which was borne from system of undamped free vibration. The solution of the uncoupled equation of motion, that is, time history of response of deflections, velocity and acceleration on reference coordinate system, is found by Newmark-${\beta}$ method, a kind of direct integral method. After the time history of dynamic response was gotten, and it was transfered to the time history of dynamic response of cable-stayed bridge by linear transformation of coordinates. As a result of this numerical analysis, effect of dynamic behavior for cable-stayed bridge under the vehicle load has varied depending on parameter of design, that is, the ratio of span, the ratio of main span length, tower height, the flexural rigidity of longitudinal girder, the flexural rigidity of tower, and the cable stiffness, investigated. Very good agreements with the existing solution in the literature are shown for the uncracked plate as well as the cracked plate.

  • PDF

Development of Analytical Model for Cement Concrete Pavements Considering Joint Behavior (줄눈부의 거동을 고려한 시멘트콘크리트 포장체의 해석모델 개발)

  • 변근주;이상민;임갑주
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.4
    • /
    • pp.91-98
    • /
    • 1990
  • Joints are provided in cement concrete pavements to control transverse and longitudinal cracking that occur due to restrained deformations caused by moisture and temperature variations in the slab. But the constuction of joints reduces the load-carrying capacity of the pavement at the joints, and pavements have been deteriorated by cracks at the slab edges along the joints due to traffic loads. Therefore, it is important to analyze the behavior of joints accurately in the design of cement concrete pavements. In this study, the mechanical behavior of cement concrete pavement slabs is analyzed by the plate-finite element model, and Winkler foundation model is adopted to analyze the subgrades. The load transfer mechan¬ism of joints are composed of dowel action, aggregate interlocking, and tied-key action, and the analytical pro¬gram is developed using these joint models. Using this numerical model as an analysis tool, the effects of joint parameters on the behavior of pavements are investigated.

Vulnerability Assessment for a Complex Structure Using Vibration Response Induced by Impact Load (복합 구조물의 충격 응답 특성을 이용한 취약성 평가 모델 연구)

  • Park, Jeongwon;Koo, Man Hoi;Park, Junhong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1125-1131
    • /
    • 2014
  • This work presents a vulnerability assessment procedure for a complex structure using vibration characteristics. The structural behavior of a three-dimensional framed structure subjected to impact forces was predicted using the spectral element method. The Timoshenko beam function was applied to simulate the impact wave propagations induced by a high-velocity projectile at relatively high frequencies. The interactions at the joints were analyzed for both flexural and longitudinal wave propagations. Simulations of the impact energy transfer through the entire structure were performed using the transient displacement and acceleration responses obtained from the frequency analysis. The kill probabilities of the crucial components for an operating system were calculated as a function of the predicted acceleration amplitudes according to the acceptable vibration levels. Following the proposed vulnerability assessment procedure, the vulnerable positions of a three-dimensional combat vehicle with high possibilities of damage generation of components by impact loading were identified from the estimated vibration responses.

Experimental study on the ground arching depending on the deformation type of the crown in the shallow tunnel (얕은터널에서 천단의 변형형태에 따른 그라운드 아칭에 관한 실험적 연구)

  • Yim, Il Jae;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.733-747
    • /
    • 2017
  • In the shallow tunnel, the surrounding ground could be loosened and deformed, which could be the cause of stress change in the ground. Terzaghi has clarified the development of a ground arching induced by the deformation of a tunnel crown in the trap door tests. However, he considered only the case in which that the tunnel crown deformed uniformly. He did not consider the effect of deformation shapes. Therefore, the relation between the shape of the ground relaxation above the tunnel crown and the deformation shape of the tunnel crown is not clear yet. In this study, model tests were performed for the three types of the tunnel crown, such as uniform, concave and convex shapes. As results, it was found that the vertical load would be transferred in various types depending on the deformation shapes of the tunnel crown.

Arrangement of Connections and Piers and Earthquake Resistant Capacity of Typical Bridges (연결부분 및 교각의 배열과 일반교량의 내진성능)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.207-212
    • /
    • 2015
  • Bridges are designed and constructed as infrastructures in order to overcome topographical obstructions for fast and smooth transfer of human/material resources. Therefore the shape and size of piers constructed along the longitudinal bridge axis should be restricted by topographical conditions. Action forces of connections and piers are affected by pier shapes and sizes together with connection arrangement which decides load carrying path under earthquakes. In this study a typical bridge is modelled with steel bearings and reinforced concrete piers and seismic analyses are performed with analysis models with different arrangement of steel bearings and piers. From analysis results ductile failure mechanisms for all analysis models are checked based on strength/action force ratios of steel bearings and pier columns. In this way the influences of arrangement of connections and piers on the earthquake resistant capacity of typical bridges are figured out in view of forming ductile failure mechanism.