• Title/Summary/Keyword: Longitudinal creep

Search Result 32, Processing Time 0.022 seconds

Determination Method for Longitudinal Initial Prestress in Composite Beams with Precast Decks I: Simply Supported Beams (프리캐스트 바닥판을 사용한 강합성보의 교축방향 초기 프리스트레스 산정방법 I : 단순보)

  • Cho, Sun-Kyu;Lee, Jong-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.15-24
    • /
    • 2008
  • This paper presents the analytical method for the long-term behavior of simply supported composite beams with precast decks prestressed in the longitudinal direction. The objectives of time-dependent analysis are to estimate losses of prestress on the concrete slab and long-term deflection due to creep and shrinkage of concrete, relaxation of prestressing steel. Also, the time-dependent analysis was carried out using the presented analytical method to evaluate the effects of several parameters on the long-term behavior of composite bridge with precast deck, including geometrical shapes of composite beams, compressive strength of concrete and magnitude of initial prestress. The results of the analysis indicated that, in the effects of geometrical shapes of composite beams, the main parameters affecting the losses of prestress and the long-term deflection were the cross sectional area and the moment of inertia of steel beam, respectively. Finally, the determination method for the required initial prestress was proposed by evaluation of the loss characteristics due to shrinkage and creep of concrete.

Viscoelastic Property Evaluation of Asphalt Cement by Ultrasonic Measurement (초음파 측정법에 의한 아스팔트 세멘트의 점탄성 특성 평가)

  • Lee, Jai-Hak
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.402-411
    • /
    • 2000
  • This study investigates the method to measure the viscoelastic properties of asphalt cement, one of the viscoelastic materials, using the ultrasound. The wave speed and attenuation were measured from $-20^{\circ}C$ to $60^{\circ}C$ at the frequency of 2.25MHz. Then, the storage and loss longitudinal moduli, loss tangent storage and loss longitudinal compliances were found depending on the temperatures based on the linear viscoelastic theory. Stress relaxation, creep, and viscosity were predicted using Maxwell and Voigt-Kelvin viscoelastic models. The validity of superposition principle and shift factor were verified by comparing the present results to the data reported in the literatures.

  • PDF

Segmental Analysis of Curved Non-Prismatic Prestressed Concrete Box Girder Bridges (시공단계를 고려환 곡선변단면 프리스트레스트 콘크리트 박스거더교량의 해석)

  • Park, Chan Min;Kang, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.71-81
    • /
    • 1994
  • A method is presented for the analysis of curved segmentally erected prestressed concrete box girder bridges including time-dependent effects due to load history, temperature history, creep, shrinkage, aging of concrete and relaxation of prestressing steel. The segments can be either precast or cast-in-place. Thin-walled beam theory and finite element method are combined to develop a curved nonprismatic thin-walled box beam element. The element consists of three nodes and each node has eight displacement degrees of freedom, including transverse distortion and longitudinal warping of the cross section.

  • PDF

Thin-walled composite steel-concrete beams subjected to skew bending and torsion

  • Giussani, Francesca;Mola, Franco
    • Steel and Composite Structures
    • /
    • v.9 no.3
    • /
    • pp.275-301
    • /
    • 2009
  • The long-term behaviour of simply supported composite steel-concrete beams with deformable connectors subjected to skew bending and torsion is presented. The problem is dealt with by recurring to the displacement method, assuming the bending and torsional curvatures and the longitudinal deformations of each sectional part as unknowns and obtaining a system of differential and integro-differential equations. Some solving methods are presented, in order to obtain exact and approximate solutions and evaluate the precision of the approximate ones. A case study is then presented. For the sake of clearness, the responses of the composite beam under loads applied in different directions are studied separately, in order to correctly evaluate the effects of each load condition.

Stability evaluation of CWR on the bridge with lead Rubber Bearing(LRB) (LRB 교좌장치를 사용한 교량의 장대레일 축력안정성 평가)

  • Yang Sin-Chu;Yun Cheol-Kyun;Lee Jin-Woo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.787-792
    • /
    • 2004
  • LRB(Lead rubber bearing) has small resistance force against slowly acting loadings such as temporal and creep loadings vice versa large resistance force against rapid loadings such as earthquake and braking loadings. By those mechanical characteristics, it has the advantage to reduce longitudinal load acting on abutments and piers, and moreover to in1prove the running stability of train by restricting the behavior of bridge under the required level. In this study, a stability evaluation method of CWR on the bridge with LRB is presented. Several parametric studies are carried to investigate how LRB contributes to the improvement of CWR stability.

  • PDF

Moment Control of Pier in Concrete Bridges Constructed by Free Cantilever Method (FCM 공법으로 시공되는 콘크리트 교량의 교각 모멘트 제어)

  • Yang, In-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.711-720
    • /
    • 2006
  • The structural behavior of concrete girder in bridges constructed by free cantilever method is time-dependent due to creep and shrinkage of concrete. The constraint effects of longitudinal movement of concrete girders can introduce unfavourable moment into piers. This study is aimed at proposing a method to reduce the moment of piers in bridge constructed by free cantilever method. The method are systematically composed of time-dependent structural analysis of bridges and loading of control force during construction of bridge. Numerical analyses are carried out depending on the parameters such as amount of control force and flexibility of pier. Time-dependent structural behavior shows that moment of pier increases according as pier height decreases. Also, moment of pier decreases when control method are applied. Numerical result of the study represents that time-dependent moment of piers can be controlled effectively by employing the proposed method.

Effects of Moving Dynamic Vehicle Loads on Flexible Pavement Response (차량의 이동하중과 하중형태가 연성 포장의 거동 특성에 미치는 영향 평가)

  • Jo, Myoung-Hwan;Kim, Nak-Seok;Nam, Young-Ho;Im, Jong-Hyuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.39-45
    • /
    • 2008
  • The most important elements in flexible pavement design criteria are stress and strain distributions. To obtain reasonable stress and strain distributions in pavements, moving wheel loads must be applied to analyze the pavement responses. In this study, finite element analysis was used to identify the three-dimensional states using the vehicle load into a constant-position / time-variable load (25, 50 and 80km/hr). In an elastic system, the strain is the same in both longitudinal and transverse directions under a single wheel. However, the same is not necessary in a viscoelastic system. Test results showed that the maximum values between transverse and longitudinal strains the bottom of asphalt concrete base layers under 25km/hr were were about 40 percent.

Spatial mechanical behaviors of long-span V-shape rigid frame composite arch bridges

  • Gou, Hongye;Pu, Qianhui;Wang, Junming;Chen, Zeyu;Qin, Shiqiang
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.59-73
    • /
    • 2013
  • The Xiaolan channel super large bridge is unique in style and with greatest span in the world with a total length of 7686.57 m. The main bridge with spans arranged as 100m+220m+100m is a combined structure composed of prestressed concrete V-shape rigid frame and concrete-filled steel tubular flexible arch. First of all, the author compiles APDL command flow program by using the unit birth-death technique and establishes simulation calculation model in the whole construction process. The creep characteristics of concrete are also taken into account. The force ratio of the suspender, arch and beam is discussed. The authors conduct studies on the three-plate webs's rule of shear stress distribution, the box girder's longitudinal bending normal stress on every construction stage, meanwhile the distribution law of longitudinal bending normal stress and transverse bending normal stress of completed bridge's box girder. Results show that, as a new combined bridge, it is featured by: Girder and arch resist forces together; Moment effects of the structure are mainly presented as compressed arch and tensioned girder; The bridge type brings the girder and arch on resisting forces into full play; Great in vertical stiffness and slender in appearance.

Vibration simulation of a multi-story high-speed railway station

  • Gao, Mangmang;Xiong, Jianzhen;Xu, Zhaojun
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.365-372
    • /
    • 2010
  • Station is an important building in high-speed railway, and its vibration and noise may significantly affect the comfort of waiting passengers. A coupling vibration model for train-structure system is established to analyze and evaluate the vibration level of a typical waiting hall under dynamic train load. The motion of a four-axle vehicle with two suspension system is modeled in multi-body dynamics with linear springs and dampers employed. The station is modeled as a whole finite element structure which is 113 m in longitudinal and 163.5 m in lateral, and the stiffness of the station foundation is considered. According to the assumptions that both wheel and rail are rigid bodies and keep contact to each other in vertical direction, and the wheel/rail interaction and displacement coordination in horizontal direction is defined by the simplified Kalker creep theory, the vehicle spatial vibration model has 27 degrees-of-freedom. An overall analysis procedure is made of the train moving through the station, by which the dynamic responses of the train and the station are calculated. According to the comparison between analysis and test results, the actual connection status between different parts of the station is estimated and the vibration level of the waiting hall is evaluated.

Field Investigation of Composite Behavior in High-speed Railway PSC Box Girder Bridge (고속전철 PSC 박스거더교 합성거동의 현장 계측에 관한 연구)

  • 김영진;김병석;강재윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.995-1000
    • /
    • 2000
  • Segmentally erected prestressed concrete box girder bridges have been widely used in Korean high speed railway. Segmental erection has been accomplished along the longitudinal direction and across the depth of cross section. The cross section is similar to a composite cross section, composed of old and new segments. Because these segments have different time-dependent creep and shrinkage properties, a stress redistribution takes place during the construction period. It is the main objective in this research to investigate this behavior. An actual bridge was instrumented with 96 vibrating wire embedded type strain gauges, 6 electronic type steel strain gauges, and 75 thermocouples. Two span continuous high speed railway bridge was selected. Two points of importance, such as the midpoint of the first span and the point of interior support, along the span of the girder were chosen to monitor the time dependent behaviors for an extended period of time. The data collection was starting just after concrete girder were cast and is still going on. According to the measured results, the strain distributions across the depth of the section at midspan and interior support were not continuous and the important redistribution of stresses takes place. Thus, rational design of prestressed concrete composite box girder bridges need.