• Title/Summary/Keyword: Longitudinal Trajectory

Search Result 92, Processing Time 0.023 seconds

Design of Shaking Beam for Piezoelectric Linear Ultrasonic Motor

  • Yoon, Seok-Jin;Park, Ji-Won;Kim, Sang-Jong;Yu, Yeon-Tae;Kim, Hyun-Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1062-1066
    • /
    • 2003
  • Design of a piezoelectric actuator for the ultrasonic motor must ensure that contact point has elliptic trajectory of movement. The new idea of an elliptic trajectory formation of the piezoelectric actuator is investigated in the paper. Shaking beam for the piezoelectric linear ultrasonic motor was introduced to realize this new idea. The principle is based on the excitation of longitudinal and flexural vibrations of the actuator by using two sources of longitudinal mechanical vibrations shifted by $\pi$/2. Mode-frequency and harmonic response analyses of the actuator based on FEM have been carried out. The moving trajectory of the contact point has been defined. Finally, The experimental research of shaking beam has been confirmed an opportunity of the elliptic trajectory reception with the help of one stable mode of the vibrations.

Auto-Landing Guidance System Design for Smart UAV

  • Min, Byoung-Mun;Shin, Hyo-Sang;Tahk, Min-Jea;Kim, Boo-Min;Kim, Byoung-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.118-128
    • /
    • 2006
  • This paper deals with auto-landing guidance system design applicable to Smart UAV(Unmanned Aerial Vehicle). The proposed guidance law generates horizontal position, velocity and altitude commands in the longitudinal channel and heading angle command in the lateral channel to track a predetermined trajectory for automatic landing. The longitudinal guidance commands are derived from an approximated dynamic equations in vertical plane. These longitudinal guidance commands are appropriately distributed to each control input as the flight mode of Smart UAV is changed. The concept of VOR(VHF Omni-directional Range) guidance system is applied to generate the required heading angle commands to eliminate the lateral deviation from the desired trajectory. The performance of the proposed guidance system for Smart UAV is evaluated using the nonlinear simulation. Simulation results show that the proposed guidance system for auto- landing provides good tracking performance along the predetermined landing trajectory.

Trajectory Control for Re-entry Vehicle (재진입비행체의 궤적제어)

  • 박수홍;이대우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.361-364
    • /
    • 1997
  • The re-enty guidance design involves trajectory optimization, generation of a reference drag acceleration profile with the satisfaction of trajectory constraints. This reference drag acceleration profile can be considered as the reference trajectory. This paper proposes the atmospheric re-entry system which is composed of longitudinal, later and range control. This paper shows the a performance of a re-entry guidance and control system using feedback linearization control and predictive control.

  • PDF

Compensation of Errors on Car Black Box Records and Trajectory Reconstruction Analysis (자동차 블랙박스 기록 오차 보정과 경로 재구성 해석)

  • Yang, Kyoung-Soo;Lee, Won-Hee;Han, In-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.182-190
    • /
    • 2004
  • This paper presents reconstruction analysis of vehicle trajectory using records of a developed black box, and results of validation tests. For reconstruction of vehicle trajectory, the black box records the longitudinal and lateral accelerations and yaw-rate of vehicle during a pre-defined time period before and after the accident. One 2-axis accelerometer is used for measuring accelerations, and one vibrating structure type gyroscope is used for measuring yaw-rate of vehicle. The vehicle's planar trajectory can be reconstructed by integrating twice accelerations along longitudinal and lateral directions with yaw-rate values. However, there may be many kinds of errors in sensor measurements. The causes of errors are as follows: mis-alignment, low frequency offset drift, high frequency noise, and projecting 3-dimensional motion into 2-dimensional motion. Therefore, some procedures are taken for error compensation. In order to evaluate the reliability and the accuracy of trajectory reconstruction results, the black box was mounted on a passenger car. The vehicle was driven and tested along various specified lanes. Through the tests, the accuracy and usefulness of the reconstruction analysis have been validated.

A Longitudinal Study of Science Core School Students' STEM Career Motivation (과학중점고등학교 학생들의 이공계 진로동기에 대한 종단분석)

  • Shin, Sein;Rachmatullah, Arif;Ha, Minsu;Lee, Jun-Ki
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.6
    • /
    • pp.835-849
    • /
    • 2016
  • The purpose of the present study is to analyze the trajectory of science core school students' STEM career motivation and to examine the relationship between the trajectory patterns and students' tracks. Longitudinal STEM career motivation data with seven constructs were collected from 256 students for five semesters and the data were analyzed by using group-based trajectory modelling analysis. In order to examine the relationship between trajectory pattern groups and the tracks, chi-square tests were conducted. Based on our findings, we found that students are likely to have similar trajectory patterns in STEM career education experience and in their perception towards STEM career value. In terms of parents' support, academic self-efficacy and STEM career motivation aspects are divided into two distinctive trajectory groups ('high' and 'low' group), while two other variables, STEM career self-efficacy and STEM career interest, are divided into three trajectory groups ('moderate declining', 'high declining', 'increasing' group). Most of the trajectory groups are shown the pattern that the level of each constructs increase until their second academic year, then after that, the patterns started going down. Moreover, there are significant relationship between track and each trajectory groups. Science track and science-core track students have similar trajectory patterns. In contrast, humanities track students have different trajectory groups in some constructs. Based on these findings, we suggest that STEM career education environment should consider various patterns of students' STEM career development.

An Exploratory Methodology for Longitudinal Data Analysis Using SOM Clustering (자기조직화지도 클러스터링을 이용한 종단자료의 탐색적 분석방법론)

  • Cho, Yeong Bin
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.5
    • /
    • pp.100-106
    • /
    • 2022
  • A longitudinal study refers to a research method based on longitudinal data repeatedly measured on the same object. Most of the longitudinal analysis methods are suitable for prediction or inference, and are often not suitable for use in exploratory study. In this study, an exploratory method to analyze longitudinal data is presented, which is to find the longitudinal trajectory after determining the best number of clusters by clustering longitudinal data using self-organizing map technique. The proposed methodology was applied to the longitudinal data of the Employment Information Service, and a total of 2,610 samples were analyzed. As a result of applying the methodology to the actual data applied, time-series clustering results were obtained for each panel. This indicates that it is more effective to cluster longitudinal data in advance and perform multilevel longitudinal analysis.

Re-Entry Trajectory Tracking Via an Inverse Dynamics Method

  • Lee, Dae-Woo;Cho, Kyeum-Rae;Hui Yan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1519-1528
    • /
    • 2004
  • Atmospheric Re-Entry guidance is divided as longitudinal and lateral. This paper proposes a longitudinal reference trajectory and control law using the inverse dynamics method with pseudospectral Legendre method. Application of this method into Re-Entry problem forces a power of calculation time-reduction due to unnecessary of integration or any iteration as well as sufficient accuracy convergence. The used guidance scheme is time-to-go.

Exploring Latent Trajectory Classes of Change in Depression Measured Using CES-D (CES-D로 측정한 우울증상 변화궤적의 잠재계층 탐색 -GMM을 활용한 한국복지패널 데이터의 재분석-)

  • Hoe, Maanse
    • Korean Journal of Social Welfare
    • /
    • v.66 no.1
    • /
    • pp.307-331
    • /
    • 2014
  • The purpose of the present study was to explore latent trajectory classes in the longitudinal change of depression measured using CES-D. The study data was extracted from the Korea Welfare Panel Study Data collected from 2006 to 2010. It consisted of 8,900 adults with aged over 19. Growth Mixture Modeling(GMM) was used to explore possible latent trajectory classes in the change of depression over time. The major findings of the present study were as follows. First, there were five latent trajectory classes in the longitudinal change of depression. Second, there were 4 latent trajectory classes of depression for people in a non-poverty group, while there were 3 latent trajectory classes of depression for people in a poverty group. These findings lead to three conclusions. First, 12.1% of the sample shows that their depression level increases over time. Second, the previous research findings of decreased depression over time might be caused by the combination of two latent trajectory classes(a low level depression sustain group and a depression decrease group). Lastly, the latent trajectory classes in the longitudinal change of depression, which are found in the present study, might be caused by interactions among depression, age, and poverty status.

  • PDF

Reference Trajectory Analysis and Trajectory Control by Bank Angle for Re-Entry Vehicle

  • Cho, Kyeum-Rae;Lee, Dae-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.745-756
    • /
    • 2002
  • The re-entry problem consists of guidance design and trajectory control. This paper summarizes the detailed relationships between the velocity, drag acceleration and altitude in determining reference trajectories. The computational issues are also addressed, and the performance of the proposed simple nonlinear control of a bank angle for the longitudinal/ lateral trajectory is demonstrated. In particular, the fixed bank angle methods that can reduce the drag acceleration errors at low-speeds are proposed. The importance of bank reversals with respect to the azimuth errors Is also elucidated.