• Title/Summary/Keyword: Longitudinal Shear Failure

검색결과 138건 처리시간 0.026초

소형펀치 시험법을 이용한 Al 2024 ECAP 재료의 강도특성 평가 (Assessment of Strength Characteristics of Al 2024 ECAP Metal Using Small Punch Testing)

  • 마영화;최정우;김선화;윤기봉
    • 대한기계학회논문집A
    • /
    • 제30권1호
    • /
    • pp.8-17
    • /
    • 2006
  • When subjected to severe shear deformation by ECAP, microstructure of Al2024 becomes extremely refined. To measure the strength of that, small punch(SP) testing method was adopted as a substitute for the conventional uniaxial tensile testing because the size of material processed by ECAP were limited to ${\psi}12\;mm$ in transverse direction. SP tests were performed with specimens in longitudinal and transverse directions of Al2024 ECAP metal. For comparing the strength values with those assessed by SP tests, uniaxial tensile tests were also conducted with specimens in longitudinal direction. Failure surfaces of the tested SP specimens showed that failure mode was shear deformation and Al 2024 ECAP metal has an anisotropy in strength. Thus, conventional equations proposed for assessing the strength characteristics were improper to assess those of Al2024 ECAP metal. In this paper a way of assessing the strength of Al 2024 ECAP metal was proposed and was proven to be effective.

ECAP Al 2024 합금의 소성변형량에 따른 강도 특성 및 이방성 연구 (A Study on Strength Characteristic Variation as amount of Plastic Deformation and Strength Anisotrophy for ECAP Al 2024 Alloy)

  • 최정우;마영화;윤기봉
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.283-286
    • /
    • 2005
  • When subjected to severe shear deformation by ECAP, microstructure of Al2024 becomes nanocrystalline grained texture material. To measure the strength of that, small punch (SP) testing method was adopted as a substitute for the conventional uniaxial tensile testing because the size of material processed by ECAP were limited to $\varphi12mm$ in transverse direction. SP tests were performed with specimens in longitudinal and transverse directions of Al 2024 ECAP metal. For comparing the strength values with those assessed by SP tests, uniaxial tensile tests were also conducted with specimens in longitudinal direction. Failure surfaces of the tested SP specimens showed that failure mode was shear deformation and Al 2024 ECAP metal has an anisotropy in strength. Thus, conventional equations proposed for assessing the strength characteristics were improper to assess those of Al2024 ECAP metal. In this paper a way of assessing the strength of Al 2024 ECAP metal was proposed and was proven to be effective.

  • PDF

Numerical analysis of stress wave of projectile impact composite laminate

  • Zhangxin Guo;Weijing Niu;Junjie Cui;Gin Boay Chai;Yongcun Li;Xiaodong Wu
    • Structural Engineering and Mechanics
    • /
    • 제87권2호
    • /
    • pp.107-116
    • /
    • 2023
  • The three-dimensional Hashin criterion and user subroutine VUMAT were used to simulate the damage in the composite layer, and the secondary stress criterion was used to simulate the interlayer failure of the cohesive element of the bonding layer and the propagation characteristics under the layer. The results showed that when the shear stress wave (shear wave) propagates on the surface of the laminate, the stress wave attenuation along the fiber strength direction is small, and thus producing a large stress profile. When the compressive stress wave (longitudinal wave) is transmitted between the layers, it is reflected immediately instead of being transmitted immediately. This phenomenon occurs only when the energy has accumulated to a certain degree between the layers. The transmission of longitudinal waves is related to the thickness and the layer orientation. Along the symmetry across the thickness direction, the greater is the stress amplitude along the layer direction. Based on the detailed investigation on the impact on various laminated composites carried out in this paper, the propagation characteristics of stress waves, the damage and the destruction of laminates can be explained from the perspective of stress waves and a reasonable layering sequence of the composite can be designed against damage and failure from low velocity impact.

Predicting the failure modes of monotonically loaded reinforced concrete exterior beam-column joints

  • Bakir, Pelin G.;Boduroglu, Hasan M.
    • Structural Engineering and Mechanics
    • /
    • 제14권3호
    • /
    • pp.307-330
    • /
    • 2002
  • This study aims at postulating a simple methodology for predicting the failure modes of monotonically loaded reinforced concrete beam-column joints. All the factors that affect the failure modes of joints are discussed in detail using an experimental database of monotonically loaded exterior beam-column joints. The relative contributions of the strut and truss mechanisms to joint shear strength are determined based on the test results. A simple design equation for the beam longitudinal reinforcement ratio for joints with low, medium and high amount of stirrups is developed. The factors influencing the failure modes of monotonically loaded exterior beam-column joints are investigated in detail. Design charts that predict the failure modes of exterior beam-column connections both with and without stirrups are developed. Experimental data are compared with the design charts. The results show that the simple methodology gives very accurate predictions of the failure modes.

단면의 모멘트를 이용한 고강도 콘크리트 보의 전단강도 예측식의 제안 (Proposition of a Predicting Equation for Shear Capacity of HSC Beam)

  • 최정선;이창훈;이주하;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.375-378
    • /
    • 2005
  • In the mechanism of beam shear failure, beam action and arch action always exist simultaneously. According to a/d ratio, the proportion and contribution between these two actions to shear capacity are merely changed. Moreover, the current codes recommendations are founded on the experimental results with normal strength concrete, the applicable range of $f'_{c}$ must be extended. Based on this mechanism and new requirement, an analytical equation is proposed for shear capacity prediction of reinforced concrete beams without stirrups. To reflect contribution change of two actions, stress variation in longitudinal reinforcement along the span is considered with Jenq and Shah Model. Dowel action and shear friction are also taken into account. Size effect is included to derive more precise equation. It is shown that the proposed equation is more accurate than other empirical equations and codes. So, it can be possible that wide range of a/d ratio is considered by one equation.

  • PDF

프리캐스트 콘크리트와 현장타설 콘크리트 복합 보의 전단강도 (Shear Strength of Hybrid Beams Combining Precast Concrete and Cast-In-Place Concrete)

  • 김철구;박홍근;홍건호;강수민
    • 콘크리트학회논문집
    • /
    • 제25권2호
    • /
    • pp.175-185
    • /
    • 2013
  • 최근 다른 압축강도로 타설된 프리캐스트 콘크리트(PC)와 현장타설 콘크리트(CIP)의 복합 부재의 사용이 증가하고 있지만 현행 기준에는 서로 다른 강도로 복합화된 부재의 전단강도에 대한 설계 기준이 없다. 그래서 이번 연구에서 서로 다른 압축강도(24 MPa, 60 MPa)로 분리 타설된 보의 전단강도 실험을 수행하여 복합 부재의 전단강도에 대해 알아보았다. 변수로는 단면형상, 휨철근비, 그리고 전단경간비를 고려하였다. 실험 결과 값과 현행 전단 기준식과 단면적비로 계산한 유효 콘크리트 강도를 이용한 예측 값을 비교하였다. 실험 결과를 분석해보면 철근비가 낮고 압축대에 60 MPa가 사용된 실험체들에 대해 설계 기준식을 과대평가하였다. 실험 결과를 기준으로 PC와 CIP 복합부재의 전단설계 기준을 제안하였다.

주인장 철근을 가진 HPFRCC 보 부재 전단 강도 예측 모델 (Shear Strength Model for HPFRCC Beams with Main Longitudinal Tensile Reinforcements)

  • 이성철;신경준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권2호
    • /
    • pp.60-67
    • /
    • 2020
  • 최근 HPFRCC의 구조 거동에 대한 연구가 많이 이루어져 왔으나, 휨 거동에 대한 연구가 주로 수행된 반면, 전단 거동에 대한 연구는 많이 부족한 상황이다. 이 연구에서는 전단 철근이 없는 HPFRCC 보 부재의 전단 강도를 합리적으로 예측할 수 있는 모델을 개발하였다. 모델을 개발하기 위해 HPFRCC 보 부재를 휨 모멘트에 저항하는 상·하현재와 전단력에 저항하는 복부 전단 요소로 간단히 이상화하였다. 이후 HPFRCC의 인장 거동 특성을 바탕으로 전단 파괴 시 복부 전단 요소의 주압축대 기울기 및 전단 응력을 산정하였으며, 이로부터 HPFRCC 보부재의 전단 강도를 산정할 수 있는 모델을 제안하였다. 제안 모델의 검증을 위해 기존의 전단 파괴된 48개의 HPFRCC 보 부재의 실험 결과와 비교하였다. 실험과 비교한 결과, 제안 모델이 실제 전단 강도를 평균 1.045, 변동계수 0.125로서 상당히 합리적으로 예측하는 것으로 나타났다. 이 연구의 주요 내용은 향후 HPFRCC가 적용되는 부재 또는 구조물에 대한 관련 연구 및 설계에 유용할 것으로 기대된다.

Flexural performance of composite sandwich wall panels with foamed concrete

  • Lei Li;Wei Huang;Zhengyi Kong;Li Zhang;Youde Wang;Quang-Viet Vu
    • Steel and Composite Structures
    • /
    • 제52권4호
    • /
    • pp.391-403
    • /
    • 2024
  • The flexural behavior of composite sandwich wall panels with different thicknesses, numbers of holes, and hole forms, and arrangement form of longitudinal steel bar (uniform type and concealed-beam type) are investigated. A total of twelve composite sandwich wall panels are prepared, utilizing modified polystyrene particles mixed with foam concrete for the flexural performance test. The failure pattern of the composite sandwich wall panels is influenced by the extruded polystyrene panel (XPS) panel thickness and the reinforcement ratio in combination, resulting in both flexural and shear failure modes. Increasing the XPS panel thickness causes the specimens to transition from flexural failure to shear failure. An increase in the reinforcement ratio leads to the transition from flexural failure to shear failure. The hole form on the XPS panel and the steel bar arrangement form affect the loading behavior of the specimens. Plum-arrangement hole form specimens exhibit lower steel bar strain and deflection compared to linear-arrangement hole form specimens. Additionally, specimens with concealed beam-type steel bar display lower steel bar strain and deflection than uniform-type steel bar specimens. However, the hole form and steel bar arrangement form have a limited impact on the ultimate load. Theoretical formulas for cracking load are provided for both fully composite and non-composite states. When compared to the experimental values, it is observed that the cracking load of the specimens with XPS panels closely matches the calculations for the non-composite state. An accurate prediction model for the ultimate load of fully composite wall panels is developed. These findings offer valuable insights into the behavior of composite sandwich wall panels and provide a basis for predicting their performance under various design factors and conditions.

Bond-slip constitutive model of concrete to cement-asphalt mortar interface for slab track structure

  • Su, Miao;Dai, Gonglian;Peng, Hui
    • Structural Engineering and Mechanics
    • /
    • 제74권5호
    • /
    • pp.589-600
    • /
    • 2020
  • The bonding interface of the concrete slab track and cement-asphalt mortar layer plays an important role in transferring load and restraining the track slab's deformation for slab track structures without concrete bollards in high-speed railway. However, the interfacial bond-slip behavior is seldom considered in the structural analysis; no credible constitutive model has been presented until now. Elaborating the field tests of concrete to cement-asphalt mortar interface subjected to longitudinal and transverse shear loads, this paper revealed its bond capacity and failure characteristics. Interfacial fractures all happen on the contact surface of the concrete track slab and mortar-layer in the experiments. Aiming at this failure mechanism, an interfacial mechanical model that employed the bilinear local bond-slip law was established. Then, the interfacial shear stresses of different loading stages and the load-displacement response were derived. By ensuring that the theoretical load-displacement curve is consistent with the experiment result, an interfacial bond-slip constitutive model including its the corresponding parameters was proposed in this paper. Additionally, a finite element model was used to validate this constitutive model further. The constitutive model presented in this paper can be used to describe the real interfacial bonding effect of slab track structures with similar materials under shear loads.

C형 접합부를 이용한 프리캐스트 콘크리트 전단벽의 거동 (Behavior of Precast Concrete Shear Walls with C-Type Connections)

  • 임우영;홍성걸
    • 콘크리트학회논문집
    • /
    • 제22권4호
    • /
    • pp.461-472
    • /
    • 2010
  • 이 논문은 새로운 수직 접합부를 가진 프리캐스트 벽체의 거동에 관한 연구이다. PC 벽체를 이용한 리모델링 건설을 위해서는 효율적이고 경제적인 조립 방법이 필요하다. C형 수직 접합부를 가진 PC 벽체 시스템은 수직방향의 벽체 사이의 휨모멘트를 전달하도록 하고, 반면에 벽체 중심에 있는 전단키는 전단력을 부담하도록 하였다. 제안된 수직 접합부는 벽체 단부에 서로 다른 방향의 슬롯 때문에 조립이 용이하다. 횡력을 받는 일자형 PC 벽체 시스템을 강성, 강도 그리고 파괴 모드에 대해 기존의 RC 벽체와 비교하였으며, 힘과 처짐과의 관계와 접합부의 조기파괴에 관해 알아보았다. 실험 결과 벽체 단부에 설치된 수직 철근이 먼저 항복하였고, 최종 변형은 접합부의 조기 파괴에 의해 결정되었다. 그리고 벽체에서 효과적인 전단력 전달을 위한 대각선 철근은 그다지 효과적이지 않았다. 단면 해석을 통해 구한 강도와 변형은 실험값과 대체로 일치하였다. 특히, 개폐거동에 의한 변형이 가장 큰 비율을 차지하였다.