• Title/Summary/Keyword: Longitudinal Pitch

Search Result 107, Processing Time 0.032 seconds

A Case of Pitch Elevation Procedure after Transsexual Operation (성전환 수술을 받은 환자에서의 Pitch Elevation 술식 1례)

  • 유영삼;이수성;장혁기;이창환
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.9 no.2
    • /
    • pp.152-155
    • /
    • 1998
  • Laryngeal framework surgery to improve change the voice is a challenging development in phoniatric surgery. Basically two categories can be distinguished : (1) attempted medialization of the vocal fold, as for the treatment of paralytic dysphonias (2) adjustment of the vocal fold's tension of transsexuals or mutational dysphonia. Vocal pitch can be elevated by various surgical technique 1) cricothyroid approximation 2) A-P expansion of the thyroid ala 3) longitudinal incision in the cords 4) intrachondral injection of the steroid, and 5) evaporation of the cords by $CO_2$ laser. We have experienced a case of pitch elevation procedure after transsexual operation. After transsexual operation, he had received anterior commissure laryngoplasty modified from Le Jeune with no change in voice pitch(Fo=110Hz). 8 monthes later, he had received cricothyroid approximation resulting in pitch elevation(Fo=160Hz).

  • PDF

Roll-Pitch-Yaw Integrated H Controller Synthesis for High Angle-of-Attack Missiles

  • Choi, Byung-Hun;Kang, Seon-Hyeok;Kim, H. Jin;Won, Dae-Yeon;Kim, Youn-Hwan;Jun, Byung-Eul;Lee, Jin-Ik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.66-75
    • /
    • 2008
  • In this work, we explore the feasibility of roll-pitch-yaw integrated autopilots for high angle-of-attack missiles. An investigation of the aerodynamic characteristics of a surface-to-air missile is presented, which reveals the strong effects of cross coupling between the longitudinal and lateral dynamics. Robust control techniques based on $H_{\infty}$ synthesis are employed to design roll-pitch-yaw integrated autopilots. The performance of the proposed roll-pitch-yaw integrated controller is tested in high-fidelity nonlinear five-degree-of-freedom simulations accounting for kinematic cross-coupling effects between the lateral and longitudinal channels. Against nonlinearity and cross-coupling effects of the missile dynamics, the integrated controller demonstrates superior performance when compared with the controller designed in a decoupled manner.

Vehicular Pitch Estimation Algorithm with ACF/IMMKF Based on GPS/IMU/OBD Data Fusion (GPS/IMU/OBD 융합기반 ACF/IMMKF를 이용한 차량 Pitch 추정 알고리즘)

  • Kim, Ju-won;Lee, Myung-su;Lee, Sang-sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1837-1845
    • /
    • 2015
  • The longitudinal velocity is necessary for accurate vehicular positioning in urban environment. The pitch angle, which is a road slope, should be calculated to acquire the longitudinal velocity. However, it is impossible to consider very accurate pitch, when using a sensor and an algorithm. That's why process noise and positioning stimation error of IMU should be adjusted to the driving environment and fuse GPS, OBD data with ACF which consist of AKF, CF in this paper. Then, final pitch angle which is appropriate for driving environment is estimated by IMMKF in order to optimize the system model according to road slope models.

Longitudinal static stability requirements for wing in ground effect vehicle

  • Yang, Wei;Yang, Zhigang;Collu, Maurizio
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.259-269
    • /
    • 2015
  • The issue of the longitudinal stability of a WIG vehicle has been a very critical design factor since the first experimental WIG vehicle has been built. A series of studies had been performed and focused on the longitudinal stability analysis. However, most studies focused on the longitudinal stability of WIG vehicle in cruise phase, and less is available on the longitudinal static stability requirement of WIG vehicle when hydrodynamics are considered: WIG vehicle usually take off from water. The present work focuses on stability requirement for longitudinal motion from taking off to landing. The model of dynamics for a WIG vehicle was developed taking into account the aerodynamic, hydrostatic and hydrodynamic forces, and then was analyzed. Following with the longitudinal static stability analysis, effect of hydrofoil was discussed. Locations of CG, aerodynamic center in pitch, aerodynamic center in height and hydrodynamic center in heave were illustrated for a stabilized WIG vehicle. The present work will further improve the longitudinal static stability theory for WIG vehicle.

Interval Type-2 Fuzzy Logic Control System of Flight Longitudinal Motion (항공기 종 제어를 위한 Interval Type-2 퍼지논리 제어시스템)

  • Cho, Young-Hwan;Lee, Hong-Gi;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.168-173
    • /
    • 2015
  • The flight control of aircraft, which has nonlinear time-varying dynamic characteristics depending on the various and unexpected external conditions, can be performed on two motions: longitudinal motion and lateral motion. In the longitudinal motion control of aircraft, pitch and trust are major control parameters and roll and yaw are control ones in the lateral motion control. Until now, a number of efficient and reliable control schemes that can guarantee the stability and maneuverability of the aircraft have been developed. Recently, the intelligent flight control scheme, which differs from the conventional control strategy requiring the various and complicate procedures such as the wind tunnel and environmental experiments, has attracted attention. In this paper, an intelligent longitudinal control scheme has been proposed utilizing Interval Type-2 fuzzy logic which can be recognized as a representative intelligent control methodology. The results will be verified through computer simulation with a F-4 jet fighter.

Safety analysis and design of full balanced hoist vertical shiplifts

  • Liao, Lekang
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.311-327
    • /
    • 2014
  • The safety relating to leakage of water and pitch instability of ship chambers of the full balanced hoist vertical shiplifts has been the focus of adoption of the type of vertical shiplifts. This paper aims to remove the doubts through theoretical and engineering researches. The leakage and pitch stability of ship chambers of full balanced hoist vertical ship lifts are investigated on the basis of theoretical analysis and exploration of engineering measures. Regarding the issue of leakage of ship chambers, a mathematical model on leaking process is built and corresponding formula and coping measures are obtained which can be applied in control program of ship lifts by linking with monitoring. The concept of safety grade is put forward to seek the best technical and economic index and the corresponding technical measures are for different grades of ship lift is suggested. For the issue of pitch instability, a methodology of combining theoretical deduction and summary of achievements of design and operation of the type of the full balanced hoist shiplifts is adopted, and the formula for design about pitch stability of ship chambers is derived.

Analysis of Pitch and Yaw Deviations Using an Aid-Pillow for the Head and Neck Cancer on the TomoTherapy (토모테라피를 이용한 두경부암 방사선치료에서 Aid-pillow 사용에 따른 Pitch와 Yaw의 변화 분석)

  • Jung, Jae Hong;Cho, Kwang Hwan;Kim, Yong Ho;Moon, Seong Kwon;Min, Chul Kee;Kim, Eun Seog;Lee, Kyung-Bae;Jung, Joo-Young;Suh, Tae-Suk;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.54-60
    • /
    • 2013
  • The aim of this study was to analysis of the pitch and yaw deviations with or without using an aid-pillow for the head and neck cancer on the TomoTherapy. A total of 14 head and neck patients were selected to without-group (n=7) and with-group (n=7). A total of 333 MVCT image sets used to evaluate the translational (lateral, longitudinal and vertical) and rotational adjustments (pitch, roll and yaw) with 153 and 180 MVCT image sets at without- and with-group, respectively. Deviations of without- and with-groups were $0.12^{\circ}$ and $0.09^{\circ}$, respectively at pitch. And, deviations without- and with-groups were $0.47^{\circ}$ and $0.17^{\circ}$, respectively at yaw. In generally, with-group had reduced than without-group for the pitch and yaw deviations. Therefore, using an aid-pillow, it will able to increase the reproducibility of treatment for the head and neck cancer patients on the TomoTherapy.

A Study on Control Algorithm for Longitudinal Stability of Large WIG Craft with FBW (FBW를 채용한 대형 위그선의 종방향 운동 안정화를 위한 조종면 제어 알고리즘 설계에 대한 연구)

  • Fang, Tae-Hyun;Yeo, Dong-Jin;Lee, Han-Jin;Kang, Chang-Gu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.180-188
    • /
    • 2007
  • In this paper the longitudinal control problem for the large WIG(wing-in-ground effect) craft is considered in the sense of the control augmentation system(CAS) derived by control surface of elevator. In order to achieve longitudinally stable systems, two modes of CAS are applied to the control systems which are pitch rate hold mode and pitch hold mode for steady flight. Since the employed CASs include the dynamic properties of the actuator time delay and the low pass filter, it provides the possible solution to be applicable to real systems. Nonlinear model simulations are fulfilled to investigate the effectiveness of the applied CASs with wind disturbance.

Prediction of Longitudinal and Directional Stability Derivatives for the SDM using Forced Harmonic Oscillation (강제조화운동을 이용한 SDM의 세로 및 방향 안정성 미계수 예측)

  • Lee, Hyungro;Lee, Seungsoo;Joh, Chang-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.948-956
    • /
    • 2012
  • This paper presents the computations of the longitudinal and directional stability derivatives for the SDM(Standard Dynamic Model). The static and dynamic derivatives are evaluated at once using forced harmonic oscillations in the pitch and yaw directions. For the numerical simulations, a 3-D Euler solver that uses a dual time stepping method for unsteady time accurate simulations is applied. This work investigates the variation of the derivatives in terms of the Mach number and the several motion parameters. Good agreement of the pitch and yaw stability derivatives with previously published numerical results and experimental results are observed.

Development of Hanging Type Circular-patterned System for Strawberry Cultivation (행거식 순환형 딸기 재배시스템 개발)

  • Sewoong An;Dong Eok Kim;Soonjung Hong;Dong Hyeon Kang
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.26 no.2
    • /
    • pp.25-30
    • /
    • 2024
  • This study was conducted to develop the hanging type circular-patterned system that at maximizing the spatial efficiency of strawberry cultivation to increase yields, while also reducing labor and improving energy efficiency. The system consists of a cultivation bed units, longitudinal moving device, bed lifting device, front and rear transfer devices, lateral transfer device, nutrient supply device, and control unit. Performance testing revealed that the operational motor for longitudinal movement should have a torque of at least 0.1Nm based on the design weight and traction force of the cultivation bed unit. The power consumption required to move one cycle was calculated to be approximately 149Wh when performing harvesting or maintenance tasks for all 10 cultivation beds. Vibration angles measured during bed movement showed that the lateral transfer resulted in a roll angle ranging from -0.62° to 0.68° and a pitch angle ranging from -3.79° to 5.26°. For longitudinal transfer, the roll angle ranged from -3.37° to 3.36°, and the pitch angle ranged from -0.45° to 0.49°.