• 제목/요약/키워드: Long-term memory

검색결과 807건 처리시간 0.029초

섬진강 댐의 수문학적 예측을 위한 딥러닝 모델 활용 (Utility of Deep Learning Model for Improving Dam and Reservoir Operation: A Case Study of Seonjin River Dam)

  • 이은미;감종훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.483-483
    • /
    • 2022
  • 댐과 저수지의 운영 최적화를 위한 수문학적 예보는 현재 수동적인 댐 운영이 주를 이루면서 활용도가 높지 않다. 불확실한 기후변화나 기후재난 상황에서 우리 사회에 악영향을 최소화하기 위해 선제적으로 대응/대비할 수 있는 댐 운영 방안이 불가피하다. 강우량 예측 기술은 기후변화로 인해 제한적인 상황이다. 실례로, 2020년 8월에 섬진강의 댐이 극심한 집중 강우로 인해 무너지는 사태가 발생하였고 이로 인해 지역사회에 막대한 경제적 피해가 발생하였다. 선제적 댐 방류량 운영 기술은 또한 환경적인 변화로 인한 영향을 완화하기 위해 필요한 것이다. 제한적인 기상 예보 기술을 극복하고자 심화학습이나 강화학습 같은 인공지능 모델들의 활용성에 대한 연구가 시도되고 있다. 따라서 본 연구는 섬진강 댐의 시간당 수문 데이터를 이용하여 댐 운영을 위한 심화학습 모델을 개발하고 그 활용도를 평가하였다. 댐 운영을 위한 심화학습 모델로서 시계열 데이터 예측에 적합한 Long Sort Term Memory(LSTM)과 Gated Recurrent Unit(GRU) 알고리즘을 구축하고 댐 수위를 예측하였다. 분석 자료는 WAMIS에서 제공하는 2000년부터 2021년까지의 시간당 데이터를 사용하였다. 입력 데이터로서 시간당 유입량, 강우량과 방류량을, 출력 데이터로서 시간당 수위 자료를 각각 사용하였으며. 결정계수(R2 Score)를 통해 모델의 예측 성능을 평가하였다. 댐 수위 예측값 개선을 위해 하이퍼파라미터의 '최적값'이 존재하는 범위를 줄여나가는 하이퍼파라미터 최적화를 두 가지 방법으로 진행하였다. 첫 번째 방법은 수동적 탐색(Manual Search) 방법으로 Sequence Length를 24, 48, 72시간, Hidden Layer를 1, 3, 5개로 설정하여 하이퍼파라미터의 조합에 따른 LSTM와 GRU의 민감도를 평가하였다. 두 번째 방법은 Grid Search로 최적의 하이퍼파라미터를 찾았다. 이 두가지 방법에서는 같은 하이퍼파라미터 안에서 GRU가 LSTM에 비해 더 높은 예측 정확도를 보였고 Sequence Length가 높을수록 정확도가 높아지는 경향을 보였다. Manual Search 방법의 경우 R2가 최대 0.72의 정확도를 보였고 Grid Search 방법의 경우 R2가 0.79의 정확도를 보였다. 본 연구 결과는 가뭄과 홍수와 같은 물 재해에 사전 대응하고 기후변화에 적응할 수 있는 댐 운영 개선에 도움을 줄 수 있을 것으로 판단된다.

  • PDF

유역 및 강우 특성인자를 고려한 딥러닝 기반의 강우손실 예측 (Prediction of rainfall abstraction based on deep learning considering watershed and rainfall characteristic factors)

  • 정민엽;김대홍;김석균
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.37-37
    • /
    • 2022
  • 유효우량 산정을 위하여 국내에서 주로 사용되는 모형은 NRCS-CN(Natural Resources Conservation Service - curve number) 모형으로, 유역의 유출 능력을 나타내는 유출곡선지수(runoff curve number, CN)와 같은 NRCS-CN 모형의 매개변수들은 관측 강우-유출자료 또는 토양도, 토지피복지도 등을 이용하여 유역마다 결정된 값이 사용되고 있다. 그러나 유역의 CN값은 유역의 토양 상태와 같은 환경적 조건에 따라 달라질 수 있으며, 이를 반영하기 위하여 선행토양함수조건(antecedent moisture condition, AMC)을 이용하여 CN값을 조정하는 방법이 사용되고 있으나, AMC 조건에 따른 CN 값의 갑작스런 변화는 유출량의 극단적인 변화를 가져올 수 있다. NRCS-CN 모형과 더불어 강우 손실량 산정에 많이 사용되는 모형으로 Green-Ampt 모형이 있다. Green-Ampt 모형은 유역에서 발생하는 침투현상의 물리적 과정을 고려하는 모형이라는 장점이 있으나, 모형에 활용되는 다양한 물리적인 매개변수들을 산정하기 위해서는 유역에 대한 많은 조사가 선행되어야 한다. 또한 이렇게 산정된 매개변수들은 유역 내 토양이나 식생 조건 등에 따른 여러 불확실성을 내포하고 있어 실무적용에 어려움이 있다. 따라서 본 연구에서는, 현재 사용되고 있는 강우손실 모형들의 매개변수를 추정하기 위한 방법을 제시하고자 하였다. 본 연구에서 제시하는 방법은 인공지능(AI) 기술 중 하나인 딥러닝(deep-learning) 기법을 기반으로 하고 있으며, 딥러닝 모형으로는 장단기 메모리(Long Short-Term Memory, LSTM) 모형이 활용되었다. 딥러닝 모형의 입력 데이터는 유역에서의 강우특성이나 토양수분, 증발산, 식생 특성들을 나타내는 인자이며, 모의 결과는 유역에서 발생한 총 유출량으로 강우손실 모형들의 매개변수 값들은 이들을 활용하여 도출될 수 있다. 산정된 매개변수 값들을 강우손실 모형에 적용하여 실제 유역들에서의 유효우량 산정에 활용해보았으며, 동역학파 기반의 강우-유출 모형을 사용하여 유출을 예측해보았다. 예측된 유출수문곡선을 관측 자료와 비교 시 NSE=0.5 이상으로 산정되어 유출이 적절히 예측되었음을 확인했다.

  • PDF

Vision-Based Activity Recognition Monitoring Based on Human-Object Interaction at Construction Sites

  • Chae, Yeon;Lee, Hoonyong;Ahn, Changbum R.;Jung, Minhyuk;Park, Moonseo
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.877-885
    • /
    • 2022
  • Vision-based activity recognition has been widely attempted at construction sites to estimate productivity and enhance workers' health and safety. Previous studies have focused on extracting an individual worker's postural information from sequential image frames for activity recognition. However, various trades of workers perform different tasks with similar postural patterns, which degrades the performance of activity recognition based on postural information. To this end, this research exploited a concept of human-object interaction, the interaction between a worker and their surrounding objects, considering the fact that trade workers interact with a specific object (e.g., working tools or construction materials) relevant to their trades. This research developed an approach to understand the context from sequential image frames based on four features: posture, object, spatial features, and temporal feature. Both posture and object features were used to analyze the interaction between the worker and the target object, and the other two features were used to detect movements from the entire region of image frames in both temporal and spatial domains. The developed approach used convolutional neural networks (CNN) for feature extractors and activity classifiers and long short-term memory (LSTM) was also used as an activity classifier. The developed approach provided an average accuracy of 85.96% for classifying 12 target construction tasks performed by two trades of workers, which was higher than two benchmark models. This experimental result indicated that integrating a concept of the human-object interaction offers great benefits in activity recognition when various trade workers coexist in a scene.

  • PDF

LSTM-GRU 모델을 활용한 실시간 수위 예측 시스템 구현 (Implementation of real-time water level prediction system using LSTM-GRU model)

  • 조민우;정한결;박범진;임하란;임인애;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.216-218
    • /
    • 2022
  • 이상 기후로 인한 자연 재해는 지속적으로 증가하고 있으며, 자연재해 중 가장 많은 피해를 입히는 유형은 폭우, 태풍 등으로 인한 수해 피해로 이러한 재해는 홍수를 동반하여 더욱 큰 피해를 입히기도 한다. 따라서, 홍수 피해를 줄이기 위해 본 논문에서는 LSTM과 GRU를 활용하여 실시간으로 홍수의 주요 파라미터인 수위를 실시간으로 예측할 수 있는 시스템을 제안한다. 홍수 예측을 위해 사용된 입력 데이터는 하천의 상류 및 하류 수위, 기온, 습도, 강수량이 사용되며, 사전에 학습된 LSTM-GRU 모델을 통해 실시간 예측을 진행한다. 입력 데이터는 과거 20시간의 데이터를 활용하여 향후 3시간의 수위를 예측한다. 본 논문에서 제안한 시스템을 통해 위험도 판별 기능을 추가하고 홍수에 노출된 사람들에게 대피 명령을 내릴 수 있다면 홍수로 인한 많은 피해를 줄일 수 있을 것으로 사료된다.

  • PDF

ProphetNet 모델을 활용한 시계열 데이터의 열화 패턴 기반 Health Index 연구 (A Study on the Health Index Based on Degradation Patterns in Time Series Data Using ProphetNet Model)

  • 원선주;김용수
    • 산업경영시스템학회지
    • /
    • 제46권3호
    • /
    • pp.123-138
    • /
    • 2023
  • The Fourth Industrial Revolution and sensor technology have led to increased utilization of sensor data. In our modern society, data complexity is rising, and the extraction of valuable information has become crucial with the rapid changes in information technology (IT). Recurrent neural networks (RNN) and long short-term memory (LSTM) models have shown remarkable performance in natural language processing (NLP) and time series prediction. Consequently, there is a strong expectation that models excelling in NLP will also excel in time series prediction. However, current research on Transformer models for time series prediction remains limited. Traditional RNN and LSTM models have demonstrated superior performance compared to Transformers in big data analysis. Nevertheless, with continuous advancements in Transformer models, such as GPT-2 (Generative Pre-trained Transformer 2) and ProphetNet, they have gained attention in the field of time series prediction. This study aims to evaluate the classification performance and interval prediction of remaining useful life (RUL) using an advanced Transformer model. The performance of each model will be utilized to establish a health index (HI) for cutting blades, enabling real-time monitoring of machine health. The results are expected to provide valuable insights for machine monitoring, evaluation, and management, confirming the effectiveness of advanced Transformer models in time series analysis when applied in industrial settings.

해양기상부표의 센서 데이터 품질 향상을 위한 프레임워크 개발 (Development of a Framework for Improvement of Sensor Data Quality from Weather Buoys)

  • 이주용;이재영;이지우;신상문;장준혁;한준희
    • 산업경영시스템학회지
    • /
    • 제46권3호
    • /
    • pp.186-197
    • /
    • 2023
  • In this study, we focus on the improvement of data quality transmitted from a weather buoy that guides a route of ships. The buoy has an Internet-of-Thing (IoT) including sensors to collect meteorological data and the buoy's status, and it also has a wireless communication device to send them to the central database in a ground control center and ships nearby. The time interval of data collected by the sensor is irregular, and fault data is often detected. Therefore, this study provides a framework to improve data quality using machine learning models. The normal data pattern is trained by machine learning models, and the trained models detect the fault data from the collected data set of the sensor and adjust them. For determining fault data, interquartile range (IQR) removes the value outside the outlier, and an NGBoost algorithm removes the data above the upper bound and below the lower bound. The removed data is interpolated using NGBoost or long-short term memory (LSTM) algorithm. The performance of the suggested process is evaluated by actual weather buoy data from Korea to improve the quality of 'AIR_TEMPERATURE' data by using other data from the same buoy. The performance of our proposed framework has been validated through computational experiments based on real-world data, confirming its suitability for practical applications in real-world scenarios.

시계열 예측 모델을 활용한 암호화폐 투자 전략 개발 (Developing Cryptocurrency Trading Strategies with Time Series Forecasting Model)

  • 김현선;안재준
    • 산업경영시스템학회지
    • /
    • 제46권4호
    • /
    • pp.152-159
    • /
    • 2023
  • This study endeavors to enrich investment prospects in cryptocurrency by establishing a rationale for investment decisions. The primary objective involves evaluating the predictability of four prominent cryptocurrencies - Bitcoin, Ethereum, Litecoin, and EOS - and scrutinizing the efficacy of trading strategies developed based on the prediction model. To identify the most effective prediction model for each cryptocurrency annually, we employed three methodologies - AutoRegressive Integrated Moving Average (ARIMA), Long Short-Term Memory (LSTM), and Prophet - representing traditional statistics and artificial intelligence. These methods were applied across diverse periods and time intervals. The result suggested that Prophet trained on the previous 28 days' price history at 15-minute intervals generally yielded the highest performance. The results were validated through a random selection of 100 days (20 target dates per year) spanning from January 1st, 2018, to December 31st, 2022. The trading strategies were formulated based on the optimal-performing prediction model, grounded in the simple principle of assigning greater weight to more predictable assets. When the forecasting model indicates an upward trend, it is recommended to acquire the cryptocurrency with the investment amount determined by its performance. Experimental results consistently demonstrated that the proposed trading strategy yields higher returns compared to an equal portfolio employing a buy-and-hold strategy. The cryptocurrency trading model introduced in this paper carries two significant implications. Firstly, it facilitates the evolution of cryptocurrencies from speculative assets to investment instruments. Secondly, it plays a crucial role in advancing deep learning-based investment strategies by providing sound evidence for portfolio allocation. This addresses the black box issue, a notable weakness in deep learning, offering increased transparency to the model.

풍력터빈 상태진단에 적용된 다양한 신경망 모델의 유효성 비교 (Comparison of the effectiveness of various neural network models applied to wind turbine condition diagnosis)

  • 응고만투안;김창현;딘민차우;박민원
    • 한국산업정보학회논문지
    • /
    • 제28권5호
    • /
    • pp.77-87
    • /
    • 2023
  • 재생 에너지 생성에서 중요한 역할을 하는 풍력 터빈은 작동 상태를 정확하게 평가하는 것이 에너지 생산을 극대화하고 가동 중지 시간을 최소화하는 데 매우 중요하다. 이 연구는 풍력 터빈 상태 진단을 위한 다양한 신경망 모델의 비교 분석을 수행하고 센서 측정 및 과거 터빈 데이터가 포함된 데이터 세트를 사용하여 효율성을 평가하였다. 분석을 위해 2MW 이중 여자 유도 발전기 기반 풍력 터빈 시스템(모델 HQ2000)에서 수집된 감시 제어 및 데이터 수집 데이터를 활용했다. 활성화함수, 은닉층 등을 고려하여 인공신경망, 장단기기억, 순환신경망 등 다양한 신경망 모델을 구축하였다. 대칭 평균 절대 백분율 오류는 모델의 성능을 평가하는 데 사용되었다. 평가를 바탕으로 풍력 터빈 상태 진단을 위한 신경망 모델의 상대적 효율성에 관한 결론이 도출되었다. 본 연구결과는 풍력발전기의 상태진단을 위한 모델선정의 길잡이가 되며, 고도의 신경망 기반 기법을 통한 신뢰성 및 효율성 향상에 기여하고, 향후 관련연구의 방향을 제시하는데 기여한다.

Deep Learning-based Rheometer Quality Inspection Model Using Temporal and Spatial Characteristics

  • Jaehyun Park;Yonghun Jang;Bok-Dong Lee;Myung-Sub Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권11호
    • /
    • pp.43-52
    • /
    • 2023
  • 고무생산업체에서 생산된 고무는 레오미터 측정을 통해 품질 적합성 검사가 이루어진 후, 자동차 부품을 위한 2차 가공으로 이어진다. 그러나 레오미터 검사는 인간에 의해 진행되고 있으며, 숙련된 작업자에게 매우 의존적이라는 단점이 존재한다. 이러한 문제점을 해결하기 위해 본 논문에서는 딥러닝 기반 레오미터 품질 검사 시스템을 제안한다. 제안된 시스템은 레오미터의 시간적, 공간적 특성을 활용하기 위해 LSTM과 CNN을 조합하였고, 각 고무의 배합재료를 보조(Auxiliary) 데이터 입력으로 사용해 하나의 모델에서 다양한 고무 제품의 품질 적합성 검사가 가능하도록 구현하였다. 제안된 기법은 30,000개의 데이터셋으로 그 성능을 학습 및 검사하였으며, 평균 f1-점수를 0.9942 달성하여 그 우수성을 증명하였다.

통합적인 인공 신경망 모델을 이용한 발틱운임지수 예측 (Predicting the Baltic Dry Bulk Freight Index Using an Ensemble Neural Network Model)

  • 소막
    • 무역학회지
    • /
    • 제48권2호
    • /
    • pp.27-43
    • /
    • 2023
  • 해양 산업은 글로벌 경제 성장에 매우 중요한 역할을 하고 있다. 특히 벌크운임지수인 BDI는 글로벌 상품 가격과 매우 밀접한 상관 관계를 지니고 있기 때문에 BDI 예측 연구의 중요성이 증가하고 있다. 본연구에서는 글로벌 시장 상황 불안정성으로 인한 정확한 BDI 예측 어려움을 해결하고자 머신러닝 전략을 도입하였다. CNN과 LSTM의 이점을 결합한 예측 모델을 설정하였고, 모델 적합도를 위해 27년간의 일일 BDI 데이터를 수집하였다. 연구 결과, CNN을 통해 추출된 BDI 특징을 기반으로 LSTM이 BDI를 R2 값 94.7%로 정확하게 예측할 수 있었다. 본 연구는 해운 경제지표 연구 분야에서 새로운 머신 러닝 통합 접근법을 적용했을 뿐만 아니라 해운 관련기관과 금융 투자 분야의 위험 관리 의사결정에 대한 시사점을 제공한다는 점에서 그 의의가 있다.