• 제목/요약/키워드: Long-term material degradation

검색결과 93건 처리시간 0.028초

오스테나이트계 316강의 장시간 재료 열화에 따른 미세조직의 변화와 기계적 특성의 변화 (Variation in Microstrutures and Mechanical Properties During Long-term Material Degradation of Austenitic 316L Steel)

  • 공원식;김정석
    • 열처리공학회지
    • /
    • 제34권6호
    • /
    • pp.315-322
    • /
    • 2021
  • In this study, we investigate the variation in microstruture and mechanical property of austenitic 316L stainless steel during long-term material degradation. To simulate the material degradation, the AISI 316 steel was exposed to accelerate under a temperature of 600℃ for up to 10000 hours at each predetermined heat treatment time. As the long-term material degradation time increase, the grain shape was changed from polygonal grains with annealing twins to circular grains. Most twins distributed uniformly interior of grains are recovered and disappered with long-term material degradation. Also, the δ ferrite along grain boundaries decomposed and transformed into the σ phase resulting in decrease of elongation of austenitic 316L stainless steel.

이종금속 용접부의 경도변화에 대한 장시간 인공열화의 영향 (Effects of Long-term Artificial-Aging on the Hardness Variation of Dissimilar Metal Weldments)

  • 김정석
    • 한국기계가공학회지
    • /
    • 제18권1호
    • /
    • pp.31-37
    • /
    • 2019
  • This study investigates the effects of long-term artificial-aging on hardness variation in the dissimilar metal weldments for nuclear power plant facilities. These dissimilar welds are inevitably required to join the components in nozzle parts of pressurized vessels, such as austenitic stainless steels and ferritic steels. A artificial thermal aging was conducted in an electrical furnace to simulate material degradation at high temperatures. The test materials were held at the temperature of $600^{\circ}C$ for 10000 hours and interrupted at various levels of degraded specimens. The degradation of hardness is a well-known phenomenon resulting from long-term aging or high-temperature degradation of structural materials. In this study, the variation of hardness at each position was different, and complicated in relation to microstructures such as twins, grains, precipitates, phase transformations, and residual stresses in dissimilar weldments. We discussed the variation of hardness in terms of microstructural changes during long-term aging.

X20CrMoV12.1강의 열화평가에 관한 연구 (A Study on the Degradation Evaluation of X20CrMoV12.1 Steel)

  • 이성호;김태형
    • 동력기계공학회지
    • /
    • 제16권1호
    • /
    • pp.58-64
    • /
    • 2012
  • Power plant boiler is one of the most important utilities providing steam to turbine in thermal power plant. It is composed of thousands of boiler tubes for high efficient heat transfer. Boiler tube material is used in such high temperature and pressure as $540^{\circ}C$, $170kg/mm^2$. The boiler tube material is needed to resist corrosion damage, creep damage and fatigue damage. 2.25%Cr-1Mo steel is used for conventional boiler tubes. In these days steam temperature and pressure of the power plant became higher for high plant efficiency. So, the material property of boiler tube must be upgraded to meet the plant property. Several boiler tube material was developed to meet such condition. X20CrMoV12.1 steel is also developed in early 1980's and used for superheater and reheater tubes in supercritical boilers. The material has martensitic structure, which is difficult to evaluate the material degradation. Boiler tube material at severe condition was tested to evaluate long term and short term degradation and creep. Through long term and high temperature degradation test, lath structure was decreased and recrystallization has been proceeded by sub-crystal. And in this research the effect of temperature and stress on boiler tube characteristic,for example, deformation by creep was changed rapidly at relatively high temperature and stress because creep was affected easily by temperature and stress.

Mn-Mo-Ni 저합금강의 기계적 연화에 미치는 장시간 열처리 영향 (Effects of Long-term Heat treatment on Mechanical Softening of Mn-Mo-Ni Low-Alloy Steel)

  • 김민석;김정석
    • 열처리공학회지
    • /
    • 제34권6호
    • /
    • pp.294-301
    • /
    • 2021
  • In the present study, we investigate the effects of long-term heat treatment at elevated temperatures on the mechanical softening of the Mn-Mo-Ni low-alloy steel. The influence of long-term heat treatment on microstructure and mechanical strength was evaluated. To simulate the long-term material degradation, heat treatment test was interrupted at several stages up to 10,000 hours in an electric furnace. The Mn-Mo-Ni low-alloy steel shows a typical bainitic phase, which consists of a well-developed lath substructure with fine precipitates along the lath boundaries. However, these fine precipitates were redissolved into the matrix with long-term heat treatment, and then the lath substructures were recovered. Consequently, ultimate tensile strength and yield strength decreased during long-term heat treatment showing a mechanical softening phenomenon.

가속화 시험을 통한 페놀폼 단열재의 장기성능 비교분석에 관한 연구 (Study on Long-term Performance of Phenolic Foam Insulation through Accelerated Aging Test)

  • 김진희;김상명;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제40권2호
    • /
    • pp.11-23
    • /
    • 2020
  • The application of the high-performance insulation materials for buildings seems to be an essential measure for reducing energy use in buildings. Phenolic foam is a readily available insulation material with thermal conductivity of about 0.018 to 0.020 W/(mK). It has the advantage of higher thermal resistance and better fire resistance compared to other conventional building insulation materials. Insulation material used for building envelope is regarded as one of the decisive factors for building's energy load. Furthermore, the degradation of its thermal performance over time increasingly affects the building's energy use demand. Generally, the life span of conventionally built buildings is expected to be more than 50 years, so the long-term performance of insulation materials is critical. This paper aims to evaluate the long-term performance of phenolic form boards through an accelerated aging test. The tests were conducted according to BS EN 13166 and KS M ISO 11561. Based on the results of the accelerated aging test, the thermal performance variation of the material was analyzed, and then its aged value after 25 years was computed. Also, the characteristics of the phenolic foam board's long-term performance were also examined based on the standard testing methods adopted.

장기 사용 보일러 헤더의 열화거동 평가에 관한 연구 (Evaluation of Degradation Behavior of the Long-Term Serviced Boiler Header)

  • 권재도;배용탁;최성종
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1673-1680
    • /
    • 2000
  • The degradation of a boiler header constructed by a material, 1Cr-0.5Mo steel in a fossil power plant is observed when the header is exposed for a long period to the high temperature and pressure. The present investigations are for evaluating the effect of the degradation on the material, such as its strength changes. Reheat-treated metal is used to compare the mechanical properties of the degraded and that of reheat-treated materials. Through the investigation, following results are obtained 1) the area ratio of ferrite in the reheat-treated material is larger than that of the degraded material, 2) the hardness and tensile strength of the degraded material are lower than that of the reheat-treated material, 3) the ductile-brittle transition temperature(DBTT) increased toward high temperature region, 4) the fatigue crack growth rate(FCGR) of the degraded material is higher than that of the reheat-treated material in the region of low ΔK value while FCGR of the both materials are similar in high ΔK region.

가속열화시험에 의한 부품·소재 사용수명 예측에 관한 연구 (Service Life Prediction of Components or Materials Based on Accelerated Degradation Tests)

  • 권영일
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제17권2호
    • /
    • pp.103-111
    • /
    • 2017
  • Purpose: Accelerated degradation tests can speed time to market and reduce the test time and costs associated with long term reliability tests to verify the required service life of a product or material. This paper proposes a service life prediction method for components or materials using an accelerated degradation tests based on the relationships between temperature and the rate of failure-causing chemical reaction. Methods: The relationship between performance degradation and the rate of a failure-causing chemical reaction is assumed and least square estimation is used to estimate model parameters from the degradation model. Results: Methods of obtaining acceleration factors and predicting service life using the degradation model are presented and a numerical example is provided. Conclusion: Service life prediction of a component or material is possible at an early stage of the degradation test by using the proposed method.

Solid Oxide Fuel Cells for Power Generation and Hydrogen Production

  • Minh, Nguyen Q.
    • 한국세라믹학회지
    • /
    • 제47권1호
    • /
    • pp.1-7
    • /
    • 2010
  • Solid oxide fuel cells (SOFCs) have been under development for a variety of power generation applications. Power system sizes considered range from small watt-size units (e.g., 50-W portable devices) to very large multi-megawatt systems (e.g., 500-MW base load power plants). Because of the reversibility of its operation, the SOFC has also been developed to operate under reverse or electrolysis mode for hydrogen production from steam (In this case, the cell is referred to as solid oxide electrolysis cell or SOEC.). Potential applications for the SOEC include on-site and large-scale hydrogen production. One critical requirement for practical uses of these systems is long-term performance stability under specified operating conditions. Intrinsic material properties and operating environments can have significant effects on cell performance stability, thus performance degradation rate. This paper discusses potential applications of the SOFC/SOEC, technological status and current research and development (R&D) direction, and certain aspects of long-term performance degradation in the operation of SOFCs/SOECs for power generation/hydrogen production.

페라이트기 11Cr 저탄소강의 자기적 특성에 대한 고온 장시간 시효열화 효과 (Effect of Long-Term Aging Degradation on Magnetic Properties of Ferritic 11Cr Low-Carbon Steel)

  • 김정석;류권상
    • 비파괴검사학회지
    • /
    • 제36권5호
    • /
    • pp.377-383
    • /
    • 2016
  • 페라이트기 11Cr 저탄소강의 자기적 특성에 대한 고온 장시간 시효열화의 영향에 대해서 연구하였다. 장시간 시효시간이 증가함에 따라서 자기이력곡선으로부터 구한 보자력, 자기이력손실은 감소하였고 이들은 시효시간에 대해 2차 지수함수 관계를 나타내었다. 비커스 경도 역시 시효시간의 증가에 따라서 감소하여 기계적 물성의 연화를 나타내었다. 미세조직적 분석으로 주사전자현미경, 후방산란전자 및 X-선 회절시험을 수행하였다. 입계에서는 $Cr_{23}C_6$ 석출물의 급격한 성장과 입내의 래스 경계부에서 Laves ($Fe_2W$)상이 발달하였다. 조대한 석출물들로 인해 장시간 시효열화에 따라서 고용원소의 고갈과 래스 하부조직이 소멸되었다. 이는 자기적 물성과 기계적 물성의 연화현상과 밀접한 관련을 갖게 된다.

12%Cr강 인성열화도의 전기화학적 평가법에 대한 연구(II) (A Study on Electrochemical Evaluation Method of Toughness Degradation for 12%Cr Steel (II))

  • 김창희;서현욱;윤기봉;박기성;김승태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.268-273
    • /
    • 2001
  • Fossil power plants operated in high temperature condition are composed of components such as turbine, boiler, and piping system. Among these components, turbine blades made with 12%Cr steel operate at a temperature above $500^{\circ}C$. Due to the long term service, turbine blades experience material degradation manifested by change in mechanical and microstructural properties. The need to make life assessment and to evaluate material degradation of turbine blade is strongly required but in reality, there is a lack of knowledge in defining failure mechanism and fundamental data for this component. Therefore, in making life assessment of turbine blade, evaluation of material degradation must be a priority. For this purpose, evaluation of toughness degradation is very important. The major cause of toughness degradation in 12Cr turbine blade is reported to be critical corrosion pitting induced by segregation of impurity elements(P etc.), coarsening of carbide, and corrosion, but the of materials for in-service application. In this study, the purpose of research is focused on evaluating toughness degradation with respect to operation time for 12%Cr steel turbine blade under high temperature steam environment and quantitatively detecting the degradation properties which is the cause of toughness degradation by means of non-destructive method, electrochemical polarization.

  • PDF