• Title/Summary/Keyword: Long-term Heat Stress

Search Result 42, Processing Time 0.028 seconds

Long Term Reliability of Fluroelastomer (FKM) O-ring after Exposure to High Pressure Hydrogen Gas

  • Choi, Myung-Chan;Lee, Jin-Hyok;Yoon, Yu-mi;Jeon, Sang-Koo;Bae, Jong-Woo
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.270-276
    • /
    • 2020
  • The long-term durability of an FKM O-ring used as parts of a hydrogen station was investigated by exposing it to high-pressure gaseous hydrogen for 1, 3, and 7 days at room temperature. Changes in its sealing force were subsequently measured at 150℃ using intermittent compression stress relaxation (CSR). No changes in the tensile properties of FKM O-ring were observed, but its initial and overall sealing forces at 150℃ significantly decreased with increasing exposure time to hydrogen gas. Microvoid formation in the FKM O-ring upon exposure to high-pressure hydrogen was minimized over time after the ring was exposed to atmospheric pressure at room temperature, which prevented changes in its tensile properties. However, applying heat accelerated FKM O-ring oxidation, which decreased its sealing force. These results indicated that identifying changes in the sealing force of rubber materials using intermittent CSR is not sufficient for monitoring changes in mechanical properties under high-pressure hydrogen atmospheres; however, it is suitable for evaluating the long-term durability of sealing materials for hydrogen station applications under similar conditions.

Suggestion of Long-term Life Time Test for PV Module in Highly Stressed Conditions (가혹조건에서의 태양전지모듈 내구성 평가를 통한 최적의 시험조건 제안)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Yoon, Soon-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.63-68
    • /
    • 2010
  • To guarantee life time more than 20 years for manufacturer without stopping photovoltaic(PV) system, it is really important to test the module in realistic time and condition compared to outside weather. In here, we tested PV modules in highly stressed condition compared to IEC standards. In IEC 61215 and IEC 61646 standards, damp-heat, thermal cycle(TC200) and mechanical test are main test items for evaluating long-term durability of PV module in controlled temperature and humidity condition. So in this paper, we have lengthened the test time for TC200 and damp-heat test and increased the loading stress on surface of module. Through this test, we can get some clue of proper the method for measuring realistic life cycle of PV modules and suggested the minimum time for PV test method. The detail description is specified as the following paper.

Evaluation of Long-term Performance of Metal Seal Through Accelerated Test (가속화 시험을 통한 금속 밀봉재 장기성능 평가)

  • Choi, Woo-seok;Lim, Jongmin;Yang, Yun-young;Cho, Sang Soon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.237-245
    • /
    • 2020
  • Metal seals are the main components that establish the containment boundary in bolted casks, which store spent nuclear fuel. These seals are degraded by heat and radiation. In addition, creep occurs when the seals are exposed to intense heat for an extended period. This creep results in the stress relaxation of the seals, which consequently impairs the seal integrity. The stress relaxation can reduce the sealing performance of the metal seal, which can further cause leakage in the storage cask. Moreover, the reduction of bolt tension leads to sealing performance degradation. In this study, the results of high-temperature-accelerated tests were obtained to evaluate the containment integrity of metal seals and the decrease in bolt tension. During the tests, the leakage rate, bolt strain, and ambient temperature of the metal seals were measured and analyzed. The metal seals were found to maintain containment integrity for 50 years of storage. The validity of the acceleration test was also investigated.

A Study on the Degradation Evaluation of X20CrMoV12.1 Steel (X20CrMoV12.1강의 열화평가에 관한 연구)

  • Lee, S.H.;Kim, T.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.58-64
    • /
    • 2012
  • Power plant boiler is one of the most important utilities providing steam to turbine in thermal power plant. It is composed of thousands of boiler tubes for high efficient heat transfer. Boiler tube material is used in such high temperature and pressure as $540^{\circ}C$, $170kg/mm^2$. The boiler tube material is needed to resist corrosion damage, creep damage and fatigue damage. 2.25%Cr-1Mo steel is used for conventional boiler tubes. In these days steam temperature and pressure of the power plant became higher for high plant efficiency. So, the material property of boiler tube must be upgraded to meet the plant property. Several boiler tube material was developed to meet such condition. X20CrMoV12.1 steel is also developed in early 1980's and used for superheater and reheater tubes in supercritical boilers. The material has martensitic structure, which is difficult to evaluate the material degradation. Boiler tube material at severe condition was tested to evaluate long term and short term degradation and creep. Through long term and high temperature degradation test, lath structure was decreased and recrystallization has been proceeded by sub-crystal. And in this research the effect of temperature and stress on boiler tube characteristic,for example, deformation by creep was changed rapidly at relatively high temperature and stress because creep was affected easily by temperature and stress.

Microstructure of Laser Surface Melted Ni-Base Alloy 600 after Heat Treatment

  • Lim, Yun-Soo;Cho, Hai-Dong;Kuk, Il-Hiun;Kim, Joung-Soo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.66-71
    • /
    • 1998
  • A study of treatment effects on laser surface melted Ni-base alloy 600, especially on precipitation behavior ad chemical composition changes on the grain boundary were conducted with microscopic equipments. Long-term aging treatment at 40$0^{\circ}C$ caused no considerable effects on the grain boundary properties. Cr-rich M$_2$$_3$C$_{6}$ and Cr$_{7}$C$_3$ carbides were precipitated and the resultant Cr depletion below 12 wt pct on some high angle grain boundaries was occurred by heat treatment at $600^{\circ}C$ for 24 hours. These results can imply that the resistance of intergranular stress corrosion cracking of heat treated alloy 600 might not be changed considerably in comparion with the as-LSM one.e.e.

  • PDF

Application of Glucuronic Acid with New Cosmetic Active Ingredient (새로운 노화 방지 성분으로서 글루쿠로닉 애씨드의 기능과 화장품 응용)

  • Lee Geun-Soo;Kim Jin-Wha;Lee Chun-Il;Pyo Hyeong-Bae;Lee Kong-Joo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.4 s.48
    • /
    • pp.471-477
    • /
    • 2004
  • Exposure to elevated temperatures, chemical (active oxigen), or physical stress (UV light) induces immediate physiological response, the expression of heat shock proteins in cells. Thus, cells with elevated Heat Shock Protein levels become more tolerant to stress conditions that are otherwise lethal. First, we studied on the new function of glucuronic acid (GA) as preventive material of skin aging. The application of the GA shows significant induction of Heat Shock Protein 70 kDa (HSP 70 kDa) in contrast to cells without it. GA at the concentration which can induce HSP 70 kDa, protects the cell death induced by second stress (heat shock and hydrogen peroxide) in NIH3T3 cells. Second, we studied on in vitro transdermal permeation characteristic of GA through the excised mouse skin. In this study, we compared the skin permeability of GA in water with O/W emulsion. As a result, skin permeation parameters of GA shows lag time 1.2 h, partition coefficient 0.114, permeation flult rate $0.83114 mg/cm^2/h.$ In case of lag time, O/W emulsion containing GA increase 2.48 h. Also, the total accumulation permeation content decreased in contrast to GA solution after 24 h. But it has long-term permeability of glucuronic acid. These results suggest that glucuronic acid could be a good cosmetic active ingredient.

A Stress Analysis of the Cast Iron Insert of Spent Nuclear Fuel Disposal Canister with the Underground Water Pressure Variation in a Deep Repository (지하수압 변화에 따른 심지층 핵폐기물 처분용기 내부 주철 구조물의 응력해석)

  • 강신욱;권영주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.77-84
    • /
    • 2000
  • In this paper, the stress analysis of the cast iron insert of spent nuclear fuel disposal canister in a deep repository at 500m underground is done for the underground pressure variation. Since the nuclear fuel disposal usually emits much heat and radiation, its careful treatment is required. And so a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences some mechanical external loads such as hydrostatic pressue of underground water, swelling pressure of bentonite, sudden rock movement etc.. Hence, the canister should be designed to withstand these loads. The cast iron insert of the canister mainly supports these loads. Therefore, the stress analysis of the cast iron insert is done to determine the design variables such as the diameter versus length of canister and the number and array type of inner baskets in this paper, The linear static structural analysis is done using the finite element analysis method. And the finite element analysis code, NISA, is used for the computation.

  • PDF

A Brief Review on Variables and Test Priorities of Photovoltaic Module Life Expectancy

  • Padi, Siva Parvathi;Chowdhury, Sanchari;Zahid, Muhammad Aleem;Kim, Jaeun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.9 no.2
    • /
    • pp.36-44
    • /
    • 2021
  • To endorse the reliability and durability of the solar photovoltaic (PV) device several tests were conducted before exposing to the outdoor field in a non-ideal condition. The PV module has high probability that intend to perform adequately for 30 years under operating conditions. To evaluate the long term performance of the PV module in diversified terrestrial conditions, one should use the outdoor performance data. However, no one wants to wait for 25 years to determine the module reliability. The accelerating stress tests performing in the laboratory by mimicking different field conditions are thus important to understand the performance of a PV module. In this review, we will discuss briefly about different accelerating stress types, levels and prioritization that are used to evaluate the PV module reliability and durability before using them in real field.

Effect of the factor developing the Heat of Hydration on Durability Design in the Subway Concrete Structure (수화열 발생인자가 지하철 콘크리트 구조물의 내구설계에 미치는 영향)

  • Lim Young-Su;Kim Eun Kyum;Sung Ki Han
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1131-1137
    • /
    • 2004
  • With the recent continuous expansion of subways, newly created subways tend to have lower locations and wider sections. Furthermore. since box structures and evacuating tunnels are classified into a category of mass-concrete. the thermal-stress, emitted from the inside. causes cracks to structures from the inception of constructing. In this paper, thermal-stress analysis and durability evaluation of box structure were carried out to investigate relationship between durability and parameter causing the heat of hydration. Through the examination, this paper tries to find out satisfactory solutions to regulated thermal crack and ensure the required duration period. The results of this paper showed that to control thermal crack and guarantee the required duration period it was more effective to use low-heat-portland cement and moderateheat-portland cement. As cement volume due to reduction of water-cement ratio increased, the possibility of thermal cracks occurrence increased but results of durability evaluation was different depending on evaluation method. The results showed that the appropriate water-cement ratio to control the heat of hydration and satisfy the required durability was $45\∼55\%$. And it was showed that during placement of concrete blocks ambient temperature affect the heat of hydration. thermal crack and long-term durability largely and when concrete was placed at low temperature to control thermal crack. it need to try to guarantee the required duration period. Henceforth, by studying not only internal and external conditions, such as the relative humidity and the unit weight. but also methods, to evaluate durability, in accordance with domestic situations, more reasonable design of durability should be achieved.

  • PDF

A Study for Optimum Joint Spacing in Jointed Concrete Pavement (줄눈 콘크리트포장의 적정 줄눈간격에 대한 연구)

  • Chon, Beom-Jun;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.69-77
    • /
    • 2005
  • Joint spacing is a potent influence in increasing the long term performance of jointed concrete pavement slabs through the control of tensile stress, sealant failure and Load Transfer Efficiency (LTE). Internal Joint Spacing is an empirical and fixed method therefore this study will present the optimum joint spacing considerations depending on various climactic conditions. Calculating the optimum joint spacing eliminates random cracking due to the effect of the environmental loads such as the early behavior of drying shrinkage and heat hydration. Optimum joint spacing is calculated so as not to cause pavement distress by the deterioration of LTE by long term pavement movement. This study shows that the provisional joint spacing is 6-8m. Pavement Distress Prediction Models show that pavement distress has no effect on joint spacing of 8m.

  • PDF