• 제목/요약/키워드: Long-term Heat Stress

검색결과 42건 처리시간 0.029초

Effects of Long-term Heat Exposure on Adaptive Mechanism of Blood Acid-base in Buffalo Calves

  • Korde, J.P.;Singh, G.;Varshney, V.P.;Shukla, D.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권5호
    • /
    • pp.742-747
    • /
    • 2007
  • In order to investigate the mechanism of adaptation to long-term heat stress, six female buffalo calves of about 7 to 8 months age, were exposed to the cool-comfort environment (THI 65) for 21 days to obtain normal values of blood acid-base. An adaptive response of acid-base regulation was determined to long term (21 days) exposure of buffalo calves to hot-dry (THI 80) and hot-humid (THI 84) conditions. Higher rectal temperature and respiratory rate was recorded under hot-humid exposure compared to hot-dry. Significant reduction in the rectal temperature and respiratory rate on day 21 of hot-dry exposure indicated early thermal adaptation compared to hot-humid. Decreasing rectal temperature and respiratory rate from day 1 to 21 was associated with concurrent decrease in blood pH and pCO2. Increased plasma chloride concentration with low base excess in blood and in extracellular fluid suggested compensatory response to respiratory alkalosis. Reduced fractional excretion of sodium with increased fractional excretion of potassium and urine flow rate indicated renal adaptive response to heat stress.

Korean Red Ginseng alleviates neuroinflammation and promotes cell survival in the intermittent heat stress-induced rat brain by suppressing oxidative stress via estrogen receptor beta and brain-derived neurotrophic factor upregulation

  • Iqbal, Hamid;Kim, Si-Kwan;Cha, Kyu-Min;Jeong, Min-Sik;Ghosh, Prachetash;Rhee, Dong-kwon
    • Journal of Ginseng Research
    • /
    • 제44권4호
    • /
    • pp.593-602
    • /
    • 2020
  • Background: Heat stress orchestrates neurodegenerative disorders and results in the formation of reactive oxygen species that leads to cell death. Although the immunomodulatory effects of ginseng are well studied, the mechanism by which ginseng alleviates heat stress in the brain remains elusive. Methods: Rats were exposed to intermittent heat stress for 6 months, and brain samples were examined to elucidate survival and antiinflammatory effect after Korean Red Ginseng (KRG) treatment. Results: Intermittent long-term heat stress (ILTHS) upregulated the expression of cyclooxygenase 2 and inducible nitric oxide synthase, increasing infiltration of inflammatory cells (hematoxylin and eosin staining) and the level of proinflammatory cytokines [tumor necrosis factor α, interferon gamma (IFN-γ), interleukin (IL)-1β, IL-6], leading to cell death (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay) and elevated markers of oxidative stress damage (myeloperoxidase and malondialdehyde), resulting in the downregulation of antiapoptotic markers (Bcl-2 and Bcl-xL) and expression of estrogen receptor beta and brain-derived neurotrophic factor, key factors in regulating neuronal cell survival. In contrast, KRG mitigated ILTHS-induced release of proinflammatory mediators, upregulated the mRNA level of the antiinflammatory cytokine IL-10, and increased myeloperoxidase and malondialdehyde levels. In addition, KRG significantly decreased the expression of the proapoptotic marker (Bax), did not affect caspase-3 expression, but increased the expression of antiapoptotic markers (Bcl-2 and Bcl-xL). Furthermore, KRG significantly activated the expression of both estrogen receptor beta and brain-derived neurotrophic factor. Conclusion: ILTHS induced oxidative stress responses and inflammatory molecules, which can lead to impaired neurogenesis and ultimately neuronal death, whereas, KRG, being the antioxidant, inhibited neuronal damage and increased cell viability.

알루미나계 자기애자의 장기 피로특성에 관한 연구 (Study on Long-term Deterioration Properties of Porcelain Insulators with Aluminous System)

  • 한세원;조한구;이동일;최인혁
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.562-563
    • /
    • 2005
  • In case of aged porcelain, the failure in basic performance tests happened in cool-heat tests. Based on this characteristic, we studied the method predicting failure phenomena through more severe accelerated cool-heat ageing and accelerating thermal mechanical performance tests. Test results indicated that the thermal stress by temperature gradient was more severe parameter than thermal stress by quenching cycles within a category of standard or accelerating methods. And there is no the deterioration of statistic strength, but the deterioration of strength according to accelerating tests is serious.

  • PDF

PET 재활용 폴리머 콘크리트의 크리프 거동 예측 (The Prediction of Long-Term Creep Behavior of Recycled PET Polymer Concrete)

  • 조병완;태기호;권오혁
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.320-323
    • /
    • 2004
  • In general, polymer concrete has more excellent mechanical properties and durability than Portland cement concrete, but very sensitive to heat and has large deformations. In this study, the long-term creep behaviors was predicted by the short-term creep test, and then the characteristic of creep of recycled-PET polymer concrete was defined by material and experimental variables. The error in the predicted long-term creep values is less than 5 percent for all polymer concrete systems. The filler carry out an important role to restrict the creep strains of recycled PET polymer concrete. The creep strain and specific on using the CaCO3 were less than using fly-ash. the creep increases with an increase in the applied stress, but not proportional the rate of stress increase ratio. The creep behavior of polymer concrete using recycled polyester resin is not a linear viscoelastic behavior.

  • PDF

초고온가스로 중간 열교환기용 Alloy 617의 장시간 크리프 변형률-시간 곡선 모델링 (Long-term Creep Strain-Time Curve Modeling of Alloy 617 for a VHTR Intermediate Heat Exchanger)

  • 김우곤;윤송남;김용완
    • 대한금속재료학회지
    • /
    • 제47권10호
    • /
    • pp.613-620
    • /
    • 2009
  • The Kachanov-Rabotnov (K-R) creep model was proposed to accurately model the long-term creep curves above $10^5$ hours of Alloy 617. To this end, a series of creep data was obtained from creep tests conducted under different stress levels at $950^{\circ}C$. Using these data, the creep constants used in the K-R model and the modified K-R model were determined by a nonlinear least square fitting (NLSF) method, respectively. The K-R model yielded poor correspondence with the experimental curves, but the modified K-R model provided good agreement with the curves. Log-log plots of ${\varepsilon}^{\ast}$-stress and ${\varepsilon}^{\ast}$-time to rupture showed good linear relationships. Constants in the modified K-R model were obtained as ${\lambda}$=2.78, and $k=1.24$, and they showed behavior close to stress independency. Using these constants, long-term creep curves above $10^5$ hours obtained from short-term creep data can be modeled by implementing the modified K-R model.

Long-Term Tropical Residency Diminishes Central Sudomotor Sensitivities in Male Subjects

  • Lee, Jeong-Beom;Bae, Jun-Sang;Shin, Young-Oh;Kang, Jong-Chul;Matsumoto, Takaaki;Toktasynovna, Aliopva Aziza;Kaimovich, Alipov Gabit;Kim, Wan-Jong;Min, Young-Ki;Yang, Hun-Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권6호
    • /
    • pp.233-237
    • /
    • 2007
  • Tropical natives (TROP) are capable of tolerating tropical heat because of their long-term adaptation to tropical environments. When exposed to heat stress, these natives tend to respond with lower sweat output, which is generally thought to be the result of heat acclimatization. The main objective of this study was to clarify central mechanisms inherent to suppressed thermal sweating in tropical natives (Malaysians) by comparing their sweating responses to those of temperate native (TEMP) (Koreans). This experiment was conducted in a thermoneutral climatic chamber ($24{\pm}0.5^{\circ}C,\;40{\pm}3%$ relative humidity). Heat loads were applied to each subject by the immersion of their lower legs in a hot water bath ($43^{\circ}C$ for 30 min). Sweat onset-time and sweat volume were compared between TROP and TEMP. The sweat onset-times on four selected points on the body ranged from 10.25 to 13.47 min in TEMP subjects, and from 16.24 to 17.83 min in TROP subjects (p<0.001). The local sweat volumes at the same sites ranged from 4.30 to $9.74 mg/cm^2$ in TEMP subjects, and from between 1.80 to $4.40mg/cm^2$ in TROP subjects (p<0.001). These results demonstrated a significant difference between TROP and TEMP subjects with regard to the manner in which they regulate their body temperatures when exposed to heat loads, and verified that long-term thermal adaptation blunts sweating sensitivities.

니켈계 합금 용접부의 미세조직 및 기계적 특성에 대한 장기 열적 시효의 영향 (Effect of long-term thermal aging on the microstructural and mechanical characteristics of nickel-based alloy weldment)

  • 유승창;함준혁;김지현
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.41-48
    • /
    • 2016
  • To investigate the effect of long-term thermal aging on the microstructural and mechanical characteristics of weldment made of nickel base alloy and its weld metal, an accelerated heat treatment was applied to simulate the process of long-term thermal aging in the operating condition of nuclear power plant. A representative nickel-based weldment with Alloy 600 and Alloy 182 was fabricated and heat-treated at $400^{\circ}C$ for 1,713 h and 3,427 h to simulate the thermal aging for the period equivalent to 15 and 30 years in operating pressurized water reactors, respectively. The microstructural and mechanical characteristics were analyzed by using optical microscopy, scanning electron microscopy and Vickers microhardness measurement. Changes were observed in precipitation behavior and microhardness of each specimen, and these changes were mainly attributed to the change in precipitated morphology and residual stress across the weld during the thermal aging process.

Scientific exploration on physiological basis of Svedana Karma (Sudation): A clinical application of heat stress.

  • Yadav, Saurabh;Verma, Vandana;Abhinav, Abhinav
    • 셀메드
    • /
    • 제9권3호
    • /
    • pp.4.1-4.8
    • /
    • 2019
  • Now researchers have focused attention on exploring the mechanism of acute responses of heat stress given in heat therapy that ultimately promotes the long term health benefits. Heat therapy is not a new idea rather it was practiced since thousands years back in the form of hot bath, sauna bath, steam room. Similarly in Ayurveda there is very comprehensive description of heat therapy in the form of Svedan karma (Sudation therapy). Svedan is a process to induce sweating artificially in a patient who had already undergone Snehan. Svedan is applied for purification of body, as well as in management of various disorders originated due to vitiation of Vata, Kapha Dosha, Meda Dhatu and musculoskeletal disorders. It produces various beneficial effects by augmenting the Agni like clears the channels, liquefies the deposited Dosha, regulates Vata Dosha, helps in removal and pacification of Dosha, augments metabolism (Agni Deepan), increases appetite, flexibility in body parts, softness and shining of skin, removes coldness, stiffness, drowsiness, improves joint motility. However, Svedana karma is vastly used by Ayurveda Physicians in treatment of various disorders but the mechanisms of beneficial effects produced by Svedan Karma are yet not completely explored on scientific basis. In this article, we will discuss and try to establish a possible mechanism of action of Svedana karma in relation to heat stress, mitochondrial adaptation, heat shock protein (HSP) and glucocorticoids as these are secreted under stressful conditions.

심지층 고준위 핵폐기물 처분용기의 열응력 해석 (Thermal Stress Analysis of Spent Nuclear Fuel Disposal Canister)

  • 하준용;권영주;최종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.617-620
    • /
    • 1997
  • In this paper, the thermal stress analysis of spent nuclear fuel disposal canister in a deep repository at 500m underground is done for the underground pressure variation. Since the nuclear fuel disposal usually emits much heat and radiation, its careful treatment is required. And so a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences some mechanical external loads such as hydrostatic pressure of underground water, swelling pressure of bentonite buffer, and the thermal load due to the heat generation of spent nuclear fuel in the basket etc.. Hence, the canister should be designed to designed to withstand these loads. In this paper, the thermal stress analysis is done using the finite element analysis code, NISA.

  • PDF

팔라듐 합금 수소분리막의 내구성 향상 (Improvement in Long-term Stability of Pd Alloy Hydrogen Separation Membranes)

  • 김창현;이준형;조성태;김동원
    • 한국표면공학회지
    • /
    • 제48권1호
    • /
    • pp.11-22
    • /
    • 2015
  • Pd alloy hydrogen membranes for hydrogen purification and separation need thermal stability at high temperature for commercial applications. Intermetallic diffusion between the Pd alloy film and the porous metal support gives rise to serious problems in long-term stability of Pd alloy membranes. Ceramic barriers are widely used to prevent the intermetallic diffusion from the porous metal support. However, these layers result in poor adhesion at the interface between film and barrier because of the fundamentally poor chemical affinity and a large thermal stress. In this study, we developed Pd alloy membranes having a dense microstructure and saturated composition on modified metal supports by advanced DC magnetron sputtering and heat treatment for enhanced thermal stability. Experimental results showed that Pd-Cu and Pd-Ag alloy membranes had considerably enhanced long-term stability owing to stable, dense alloy film microstructure and saturated composition, effective diffusion barrier, and good adhesive interface layer.