• 제목/요약/키워드: Long-chain dicarboxylic acid

검색결과 3건 처리시간 0.022초

Molecular Dynamic Simulations of the Fatty Acid Bilayer Containing Very Long Chain Transmembrane Dicarboxylic Acids

  • Choi, Yong-Hoon;Yang, Chul-Hak;Kim, Hyun-Won;Jung, Seun-Ho
    • BMB Reports
    • /
    • 제33권1호
    • /
    • pp.54-58
    • /
    • 2000
  • Recent research results regarding the very long chain transmembrane ${\alpha},{\omega}-dicarboxylic$ components in the membrane of extremophilic eubacteria, such as Sarcina ventriculi, Thennotoga maritima, and Thermoanaerobacter ethanolicus have raised interesting questions concerning the physical and biochemical function on these components in the membrane. In order to understand the dynamic characteristics of these acids which reside in the bilayer membrane, 580 ps molecular dynamic simulations at 300 K were performed for two model systems. These systems were the bilayer with regular chain (C16:0 or C18:1) fatty acid methyl esters and the fatty acid bilayer containing very long chain transmembrane dicarboxylic acid methyl esters (${\alpha},{\omega}-15,16-dimethyltriacotane-dioate$ dimethyl ester; C32:0). Our analyses indicate that very long chain transmembrane dicarboxylic acids have a noticeable influence on the bilayer dynamics at a sub-nanosecond time scale. The center-ofmass mean-squared-displacement (MSD) of regular chain fatty acids adjacent to the very long chain transmembrane dicarboxylic acids decreased, the long-axis order parameter increased, and the reorientational motions of methylene groups were slowed along the hydrocarbon chains. These results indicate that the very long chain transmembrane dicarboxylic acids reduce the molecular order of the whole bilayer membrane.

  • PDF

Fast Determination of Multiple-Reaction Intermediates for Long-Chain Dicarboxylic Acid Biotransformation by Gas Chromatography-Flame Ionization Detector

  • Cho, Yong-Han;Lee, Hye-Jin;Lee, Jung-Eun;Kim, Soo-Jung;Park, Kyungmoon;Lee, Do Yup;Park, Yong-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권5호
    • /
    • pp.704-708
    • /
    • 2015
  • For the analysis of multiple-reaction intermediates for long-chain dicarboxylic acid biotransformation, simple and reproducible methods of extraction and derivatization were developed on the basis of gas chromatography with flame ionization detector (GC-FID) instead of mass spectrometry. In the derivatization step, change of the ratio of pyridine to MSTFA from 1:3 to 9:1 resulted in higher peak intensity (p = 0.021) and reproducibility (0.6%CV) when analyzing 32 g/l ricinoleic acid (RA). Extraction of RA and ω-hydroxyundec-9-enoic acid with water containing 100 mM Tween 80 showed 90.4-99.9% relative extraction efficiency and 2-7%CV compared with those with hydrophobic ethyl acetate. In conclusion, reduction of the pyridine content and change of the extraction solvent to water with Tween 80 provided compatible derivatization and extraction methods to GC-FID-based analysis of longchain carboxylic acids.