• Title/Summary/Keyword: Long-chain Fatty Acid

Search Result 196, Processing Time 0.025 seconds

Whole-cell Biotransformation of Chlorella Oil Hydrolysates into Medium Chain Fatty Acids

  • Seo, Joo-Hyun;Min, Won-Ki;Lee, Jung-Hoo;Lee, Sun-Mee;Lee, Choul-Gyun;Park, Jin-Byung
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.44-52
    • /
    • 2018
  • A synthetic pathway, which consisted of fatty acid double bond hydratase, alcohol dehydrogenase, and Baeyer-Villiger monooxygenase, was applied to Chlorella oil to produce ester fatty acids, which can be hydrolyzed into medium chain fatty acids. Since linoleic acid is a major fatty acid constituent of Chlorella oil, a fatty acid double bond hydratase from Lactobacillus acidophilus NBRC13951, which is able to convert linoleic acid into 13-hydroxyoctadec-9-enoic acid, was used. Recombinant Escherichia coli expressing the fatty acid double bond hydratase from L. acidophilus NBRC13951 successfully transformed linoleic acid in Chlorella oil hydrolysates into 13-hydroxyoctadec-9-enoic acid with approximately 60% conversion yield. 13-Hydroxyoctadec-9-enoic acid was further converted into ester fatty acids by the recombinant E. coli expressing a long chain secondary alcohol dehydrogenase and a Baeyer-Villiger monooxygenase. The resulting ester fatty acids were then hydrolyzed into medium chain fatty acids by a lipase. Overall, industrially relevant medium chain fatty acids were produced from Chlorella oil hydrolysates. Thereby, this study may contribute to biosynthesis of medium chain fatty acids from microalgae oils as well as long chain fatty acids.

Molecular Dynamic Simulations of the Fatty Acid Bilayer Containing Very Long Chain Transmembrane Dicarboxylic Acids

  • Choi, Yong-Hoon;Yang, Chul-Hak;Kim, Hyun-Won;Jung, Seun-Ho
    • BMB Reports
    • /
    • v.33 no.1
    • /
    • pp.54-58
    • /
    • 2000
  • Recent research results regarding the very long chain transmembrane ${\alpha},{\omega}-dicarboxylic$ components in the membrane of extremophilic eubacteria, such as Sarcina ventriculi, Thennotoga maritima, and Thermoanaerobacter ethanolicus have raised interesting questions concerning the physical and biochemical function on these components in the membrane. In order to understand the dynamic characteristics of these acids which reside in the bilayer membrane, 580 ps molecular dynamic simulations at 300 K were performed for two model systems. These systems were the bilayer with regular chain (C16:0 or C18:1) fatty acid methyl esters and the fatty acid bilayer containing very long chain transmembrane dicarboxylic acid methyl esters (${\alpha},{\omega}-15,16-dimethyltriacotane-dioate$ dimethyl ester; C32:0). Our analyses indicate that very long chain transmembrane dicarboxylic acids have a noticeable influence on the bilayer dynamics at a sub-nanosecond time scale. The center-ofmass mean-squared-displacement (MSD) of regular chain fatty acids adjacent to the very long chain transmembrane dicarboxylic acids decreased, the long-axis order parameter increased, and the reorientational motions of methylene groups were slowed along the hydrocarbon chains. These results indicate that the very long chain transmembrane dicarboxylic acids reduce the molecular order of the whole bilayer membrane.

  • PDF

The Role of Membranes and Intracellular Binding Proteins in Cytoplasmic Transport of Hydrophobic Molecules : Fatty Acid Binding Proteins and Long Chain Fatty Acids (세포내 소수성 물질 이동에서 막과 세포내 결합단백질의 역살 : 지방산 결합 단밸직과 장쇄 지방산)

  • 김혜경
    • Journal of Nutrition and Health
    • /
    • v.30 no.6
    • /
    • pp.658-668
    • /
    • 1997
  • Path of a small hydrophobic molecule through the aqueous cytoplasma is not linear. Partition may favor membrane binding by several orders of magnitude : thus significant membrane association will markedly decrease the cytosolic transport rate. The presence of high concentration of soluble binding proteins for these hydrophobic molecules would compete with membrane association and thereby increase transport rate. For long chain fatty acid molecules, a family of cytosolic binding proteins collectively known as the fatty acid binding proteins(FABP), are thought to act as intracellular transport proteins. This paper examines the mechanism of transfer of fluorescent antyroyloxy-labeled fatty acids(AOFA) from purified FABPs to phosholipid membranes. With the exception of the liver FABP, AOFA is transferred from FABP by collisional interaction of the protein with a acceptor membrane. The rate of transfer increased markedly when membranes contain anionic phospholipids. This suggests that positively charged residues on the surface of the FABP may interact with the membranes. Neutralization of the surface lysine residues of adipocyte FABP decreased fatty acid transfer rate, and transfer was found to proceed via aqueous diffusion rather than collisional interaction. Site specific mutagenesis has further shown that the helix-turn-helix domain of the FABP is critical for interaction with anionic acceptor membranes. Thus cytosolic FABP may function in intracellular transport of fatty acid to decrease their membranes association as well as to target fatty acid to specific subcellular sites of utilization.

  • PDF

Long-chain Fatty Acid Oxidation Disorders and Therapeutic Approach (장쇄 지방산 산화 장애와 치료적 접근법)

  • Lee, Jung Hyun
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • Long-chain fatty acid oxidation disorders (LC-FAOD) are an autosomal recessive inherited rare disease group that result in an acute metabolic crisis and chronic energy deficiency owing to the deficiency in an enzyme that converts long-chain fatty acids into energy. LC-FAOD includes carnitine palmitoyltransferase type 1 (CPT1), carnitine-acylcarnitine translocase (CACT), carnitine palmitoyltransferase type 2 (CPT2), very long-chain acyl-CoA dehydrogenase (VLCAD), long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD), and trifunctional protein (TFP) deficiencies. Common symptoms of LC-FAOD are hypoketotic hypoglycemia, cardiomyopathy, and myopathy. Depending on symptom onset, the disease can be divided as neonatal period, late infancy and early childhood, adolescence, or adult onset, but symptoms can appear at any time. The neonatal screening test (NBS) can be used to identify the characteristic plasma acylcarnitine profiles for each disease and confirmed by deficient enzyme analysis or molecular testing. Before introduction of NBS, the mortality rate of LC-FAOD was very high. With NBS implementation as routine neonatal care, the mortality rate was dramatically decreased, but severe symptoms such as rhabdomyolysis recur frequently and affect the quality of life. Triheptanoin (Dojolvi®), the first drug for pediatric and adult patients with molecularly confirmed LC-FAOD, has recently been approved by the US Food and Drug Administration in 2020. In this review, the diagnosis of LC-FAOD and treatment including triheptanoin are summarized.

The Photo-reproducibility and Stability of Long Chain Fatty Acid Containing Azobenzene (아조벤젠을 함유한 장쇄 지방산의 광재현성과 안정성에 관한 연구)

  • Par, Keun-Ho;Park, Tae-Gone
    • Journal of the Korean Applied Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.109-114
    • /
    • 1995
  • The Synthesis of long chain fatty acid containing azobenzene and $(C_{n}-Azo)$ was optimized, starting from p-(p'-hydroxy phenyl azo)-benzoic acid and the product of reaction containing azobenzene chromophores was investigated by ultraviolet spectrophotometery in chloroform solvent at the various temperature. In addition, Reversibility and stability of azo compounds have been measured by means of Ultraviolet and the structure of these compound were ascertained by means of FT-IR and NMR. Recrystallization of reaction product in the solvent results the experimental yield obtained about 62.93% p-(p'-octadecyloxy phenyl azo)-benzoic acid. Long chain azobenzene derivatives in chloroform solution are induced photoisomerization by u. v. and visible light irradiation. The solution of long chain fatty acids$(C_{n}-Azo)$ containing azobenzene are possible of being applied to functional molecular devices such as photomemory and light switching.

Fatty Acid Composition of Human and Cow's milk (인유(入乳) 및 우유(牛乳)의 지방산 조성에 관하여)

  • Yoon, Tai-Heon;Lim, Kyung-Ja;Kim, Eul-Sang;Chung, Wood-Kap
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.11 no.1
    • /
    • pp.15-20
    • /
    • 1982
  • The fatty acid composition of human milk was determined in 20 milk samples (ten colostrum and 10 mature) obtained at different stages of lactation. Human colostrum contained a lower percentage of total lipids than mature milk. In comparison with mature milk, human colostrum was characterized by a lower percentage of saturated fatty acids, a higher percentage of monounsaturated fatty acids and a higher percentage of extra-long-chain polyunsaturated fatty acid metabolites of both linoleic acid ($\omega$ 6 series) and linolenic acid ($\omega$ 3 series). The linoleic acid levels reported here are considerably higher than those reported previously in Korea. This shift has paralleled an increase in the use of vegetable oils in Korean diet. The human mature milk differed from marketing cow's milk in fatty acid composition, as it had a lower content of short-, medium-and long-chain saturated fatty acids and a higher content of long-chain monounsaturated and polyunsaturated fatty acids.

  • PDF

Photoisomerization of Polymer by Esterification Reaction between Poly vinyl alcohol and Azobenzene-containing Long Chain Fatty Acids (아조벤젠을 함유한 장쇄지방산과 폴리 비닐알코올간의 에스테르화 반응에 의한 폴리머의 광이성화 현상에 관한 연구)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.53-60
    • /
    • 1994
  • The Synthesis of azobenzene containing long chain fatty acid and poly vinyl alcohol by esterification reaction($C_{n}-Azo-PVA$) was optimized, starting from P-(P'-hydroxy phenyl azo)-benzoic acid and the product of reaction containing azobenzene chromophores was investigated by ultraviolet spectrophotometery in toluene solvent at room temperature. In addition, UV absorption spectra of Langmmuir Blodggett (LB) film deposited on quartz plate have been measured and the structure of these compounds were ascertained by means of Ultraviolet and FT-IR. Recrystallization of reaction product in the solvent results the experimental yield obtained about 22.27% P-(P'-octadecyloxy phenyl azo)-benzoic acid-poly vinyl alcohol. Long chain azobenzene derivative-poly vinyl alcohols are induced phtoisomerization by u, v, and visible light irradiation. The LB film of azobenzene containing long chain fatty acids($C_{18}-Azo-PVA$) are possible of being applied to functional molecular devices such as photomemory and light switching.

Effects of Different Concentrate and Roughage Ratios on Ruminal Balance of Long Chain Fatty Acids in Sheep

  • Sasaki, H.;Horiguchi, K.;Takahashi, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.7
    • /
    • pp.960-965
    • /
    • 2001
  • The effects of different feeding ratios of concentrate (C) and roughage (R) on balance of long chain fatty acids and microbial fatty acids in the rumen of sheep were investigated. The diets were divided into 8:2 (concentrate feeding), 4:6 (middle mixture) and 0:10 (roughage feeding) ratios (C:R). Duodenal digesta was collected through 24 hours after feeding. Biohydrogenation rate, total duodenal flow of fatty acids and microbial fatty acids were measured. Total duodenal flow of fatty acids was significantly (p<0.05) increased with increasing concentrate. Total duodenal flow of fatty acid was greater than intake of fatty acid in all diets. In comparison with intake of each fatty acid, duodenal flow of stearic acid ($C_{18:0}$) remarkably increased in all diets. Biohydrogenation rate for total C18 unsaturated fatty acids in the rumen tended to increase (p<0.10) when sheep were fed the middle mixture. In particular, biohydrogenation rate of linoleic acid ($C_{18:2}$) and linolenic acid ($C_{18:3}$) with the middle mixture were highest (p<0.05) compared with other diets. Duodenal flow of protozoal fatty acids was significantly (p<0.05) increased with the increased supply of concentrate. That of bacterial fatty acids was significantly (p<0.05) increased with both concentrate diets compared with the roughage feeding diet. $C_{18:0}$ occupied the greater part of both protozoal and bacterial fatty acids in all treatments. Results indicated that biohydrogenation of free unsaturated fatty acids was actively carried out when the middle mixture diet was supplied, and that microbial uptake and synthesis of fatty acids were accelerated by adding the supply of concentrate.

Improved Production of Long-Chain Fatty Acid in Escherichia coli by an Engineering Elongation Cycle During Fatty Acid Synthesis (FAS) Through Genetic Manipulation

  • Jeon, Eunyoung;Lee, Sunhee;Lee, Seunghan;Han, Sung Ok;Yoon, Yeo Joon;Lee, Jinwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.990-999
    • /
    • 2012
  • The microbial biosynthesis of fatty acid of lipid metabolism, which can be used as precursors for the production of fuels of chemicals from renewable carbon sources, has attracted significant attention in recent years. The regulation of fatty acid biosynthesis pathways has been mainly studied in a model prokaryote, Escherichia coli. During the recent period, global regulation of fatty acid metabolic pathways has been demonstrated in another model prokaryote, Bacillus subtilis, as well as in Streptococcus pneumonia. The goal of this study was to increase the production of long-chain fatty acids by developing recombinant E. coli strains that were improved by an elongation cycle of fatty acid synthesis (FAS). The fabB, fabG, fabZ, and fabI genes, all homologous of E. coli, were induced to improve the enzymatic activities for the purpose of overexpressing components of the elongation cycle in the FAS pathway through metabolic engineering. The ${\beta}$-oxoacyl-ACP synthase enzyme catalyzed the addition of acyl-ACP to malonyl-ACP to generate ${\beta}$-oxoacyl-ACP. The enzyme encoded by the fabG gene converted ${\beta}$-oxoacyl-ACP to ${\beta}$-hydroxyacyl-ACP, the fabZ catalyzed the dehydration of ${\beta}$-3-hydroxyacyl-ACP to trans-2-acyl-ACP, and the fabI gene converted trans-2-acyl-ACP to acyl-ACP for long-chain fatty acids. In vivo productivity of total lipids and fatty acids was analyzed to confirm the changes and effects of the inserted genes in E. coli. As a result, lipid was increased 2.16-fold higher and hexadecanoic acid was produced 2.77-fold higher in E. coli JES1030, one of the developed recombinants through this study, than those from the wild-type E. coli.

The Selective Synthesis of ${alpha}$-Sulfo Long Chain Fatty Acid Monoglyceride ((${alpha}$-술폰 고급 지방산 모노글리세라이드의 선택적 합성)

  • Yun, Y.K.;Jeoung, H.G.;Park, S.S.;Kim, T.Y.;Nam, K.D.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.31-38
    • /
    • 1993
  • Anionic polyolic surfactants, ${alpha}-sulfo$ fatty acids that straight long chain alkyl group has from 12 to 18 hydrocarbon numbers, was synthesized with sulfur trioxide-dioxane complex to good yields. New sodium ${alpha}-sulfo$ long chain fatty acid monoglyceride were obtained by reaction that the ketalificaticn and esterification of glycerol, acetone and ${alpha}-sulfo$ long chain fatty acid and hydrolysis respectively. These reaction products separated by column chromatography and their $R_{f}$ values($R_{f}{\times}100$) were 19, 21, 24 and 26 respectively. These compounds were identified by infrared spectroscopy and $^{1}H$ NMR spectroscopy.