• 제목/요약/키워드: Long-Term Memory

검색결과 808건 처리시간 0.035초

Prediction Oil and Gas Throughput Using Deep Learning

  • Sangseop Lim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권5호
    • /
    • pp.155-161
    • /
    • 2023
  • 우리나라 수출의 97.5%, 수입의 87.2%가 해상운송으로 이뤄지며 항만이 한국 경제의 중요한 구성요소이다. 이러한 항만의 효율적인 운영을 위해서는 항만 물동량의 단기 예측을 통해 개선시킬 수가 있으며 과학적인 연구방법이 필요하다. 이전 연구는 주로 장기예측을 기반으로 대규모 인프라투자를 위한 연구에 중점을 두었으며 컨테이너 항만물동량에만 집중한 측면이 크다. 본 연구는 국내 대표적인 석유항만인 울산항의 석유 및 가스화물 물동량에 대한 단기 예측을 수행하였으며 딥러닝 모델인 LSTM(Long Short Term Memory) 모델을 사용하여 RMSE기준으로 예측성능을 확인하였다. 본 연구의 결과는 석유 및 가스화물 물동량 수요 예측의 정확도를 높여 항만 운영의 효율성을 개선하는 근거가 될 수 있을 것으로 기대된다. 또한 기존 연구의 한계로 컨테이너 항만 물동량뿐만 아니라 석유 및 가스화물 물동량 예측에도 LSTM의 활용할 수 있다는 가능성을 확인할 수 있으며 향후 추가 연구를 통해 일반화가 가능할 것으로 기대된다.

분수공적분을 이용한 KOSPI200지수의 현.선물 장기균형관계검정 (A Study on the Long-Run Equilibrium Between KOSPI 200 Index Spot Market and Futures Market)

  • 김태혁;임순영;박갑제
    • 재무관리연구
    • /
    • 제25권3호
    • /
    • pp.111-130
    • /
    • 2008
  • 이 논문은 분수공적분 개념을 이용하여 KOSPI200지수와 지수선물가격간에 장기균형관계가 있는지를 살펴보고 있다. 이것을 위해 로그변환 현 선물가격 각각의 분수차분계수를 주파수영역 (frequency domain)의 GPH 추정량을 구한 다음, 현 선물 회귀식의 추정을 통해 도출한 균형오차의 차분계수와 비교하였다. 이 방법은 전통적인 공적분방법에서 규명하지 못한 금융시계열자료의 통계적인 특성을 분석할 수 있는 장점이 있다. 분석결과를 요약하면 다음과 같다. 첫째, 정수차원의 차분구조모형에서는 공적분검정을 통한 장기균형관계의 증거를 찾기가 어려웠다. ADF 단위근 검정과 KPSS 정상성 검정에서 상반된 결과가 제시되어 두 시계열을 I(1)으로 확정하기가 불가능하였다. 둘째, GPH 추정량를 이용하여 차분계수를 추정한 결과, 두 시계열 모두 불안정한 장기기억구조를 가지는 것으로 식별되었고 균형오차는 정상적인(stationary) 장기기억구조를 가져 현 선물가격간에 분수공적분관계가 있는 것으로 파악되었다. 이 논문은 선물시장과 현물시장이 장기균형관계를 국내 선행연구에서 이용하지 않았던 분수공적분을 이용하여 분석했다는 점에서 그 의의를 찾을 수 있다.

  • PDF

Dynamic deflection monitoring method for long-span cable-stayed bridge based on bi-directional long short-term memory neural network

  • Yi-Fan Li;Wen-Yu He;Wei-Xin Ren;Gang Liu;Hai-Peng Sun
    • Smart Structures and Systems
    • /
    • 제32권5호
    • /
    • pp.297-308
    • /
    • 2023
  • Dynamic deflection is important for evaluating the performance of a long-span cable-stayed bridge, and its continuous measurement is still cumbersome. This study proposes a dynamic deflection monitoring method for cable-stayed bridge based on Bi-directional Long Short-term Memory (BiLSTM) neural network taking advantages of the characteristics of spatial variation of cable acceleration response (CAR) and main girder deflection response (MGDR). Firstly, the relationship between the spatial and temporal variation of the CAR and the MGDR is described based on the geometric deformation of the bridge. Then a data-driven relational model based on BiLSTM neural network is established using CAR and MGDR data, and it is further used to monitor the MGDR via measuring the CAR. Finally, numerical simulations and field test are conducted to verify the proposed method. The root mean squared error (RMSE) of the numerical simulations are less than 4 while the RMSE of the field test is 1.5782, which indicate that it provides a cost-effective and convenient method for real-time deflection monitoring of cable-stayed bridges.

상호작용식 메트로놈(Interactive Metronome: IM) 훈련이 지적장애 아동의 집중력과 단기기억력에 미치는 영향 (The Effects of Interactive Metronome on Short-term Memory and Attention for Children With Mental Retardation)

  • 박아름;유두한
    • 대한감각통합치료학회지
    • /
    • 제14권1호
    • /
    • pp.19-30
    • /
    • 2016
  • 목적 : 본 연구는 상호작용식 메트로놈(Interactive Metronome: IM) 훈련이 지적장애 아동의 집중력과 단기기억력에 미치는 영향에 대해 알아보고자 하였다. 연구방법 : 지적장애로 진단 받은 아동 2명을 대상으로, 개별실험 연구방법(single-subject experimental research design)중 ABA 설계 사용하였다. 총 18회기로 매주 2회기씩 총 9주 진행하였다. 기초선 기간에는 IM 훈련을 하지 않은 상태에서 Electroencephalogram(EEG)를 부착하여 단축형 검사(short form test)로 뇌파를 측정하였으며, 대상자가 무작위(random)로 선택한 단기기억 과제로 측정을 실시하였다. 중재기 12회기는 IM 훈련을 40~50분간 실시한 후 단기기억 과제(shot-term memory test)를 측정 하였으며, 단축형 검사를 측정하였다. 재기초선 3회기에도 기초선 기간과 동일하게 진행하였다. 결과 : 상호작용식 메트로놈 훈련 후 집중력의 향상과 뇌파에서 변화를 보였으며, 단기기억 과제에서도 향상된 결과를 보였다. 결론 : 상호작용식 메트로놈 훈련은 지적장애 아동에게 집중력과 단기기억력의 향상을 위한 중재방법으로 기대되며, 본 연구는 이를 위한 근거 자료로 사용될 수 있을 것이다.

스마트 팩토리 모니터링을 위한 빅 데이터의 LSTM 기반 이상 탐지 (LSTM-based Anomaly Detection on Big Data for Smart Factory Monitoring)

  • ;;김진술
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권4호
    • /
    • pp.789-799
    • /
    • 2018
  • 이 논문에서는 이러한 산업 단지 시스템에서의 비정상적인 동작이 일어날 때, 시간 계열의 데이터를 분석하기 위하여 Big 데이터를 이용한 접근을 기반으로 하는 머신 러닝을 보여줍니다. Long Short-Term Memory (LSTM) 네트워크는 향상된 RNN버전으로서 입증되었으며 많은 작업에 유용한 도움이 되었습니다. 이 LSTM 기반 모델은 시간적 패턴뿐만 아니라 더 높은 레벨의 시간적 특징을 학습 한 다음, 미래의 데이터를 예측하기 위해 예측 단계에 사용됩니다. 예측 오차는 예측 인자에 의해 예측 된 결과와 실제 예상되는 값의 차이입니다. 오차 분포 추정 모델은 가우스 분포를 사용하여 관찰 스코어의 이상을 계산합니다. 이러한 방식으로, 우리는 하나의 비정상적 데이터의 개념에서 집단적인 비정상적 데이터 개념으로 바뀌어 갑니다. 이 작업은 실패를 최소화하고 제조품질을 향상시키는 Smart Factory의 모니터링 및 관리를 지원할 수 있습니다.

딥러닝 기반 침수 수위 예측: 미국 텍사스 트리니티강 사례연구 (Water Level Forecasting based on Deep Learning: A Use Case of Trinity River-Texas-The United States)

  • 트란 광 카이;송사광
    • 정보과학회 논문지
    • /
    • 제44권6호
    • /
    • pp.607-612
    • /
    • 2017
  • 도시에서 홍수 피해를 방지하기 위한 침수를 예측하기 위해 본 논문에서는 딥러닝(Deep Learning) 기법을 적용한다. 딥러닝 기법 중 시계열 데이터 분석에 적합한 Recurrent Neural Networks (RNNs)을 활용하여 강의 수위 관측 데이터를 학습하고 침수 가능성을 예측하였다. 예측 정확도 검증을 위해 사용한 데이터는 미국의 트리니티강의 데이터로, 학습을 위해 2013 년부터 2015 년까지 데이터를 사용하였고 평가 데이터로는 2016 년 데이터를 사용하였다. 입력은 16개의 레코드로 구성된 15분단위의 시계열 데이터를 사용하였고, 출력으로는 30분과 60분 후의 강의 수위 예측 정보이다. 실험에 사용한 딥러닝 모델들은 표준 RNN, RNN-BPTT(Back Propagation Through Time), LSTM(Long Short-Term Memory)을 사용했는데, 그 중 LSTM의 NE(Nash Efficiency)가 0.98을 넘는 정확도로 기존 연구에 비해 매우 높은 성능 향상을 보였고, 표준 RNN과 RNN-BPTT에 비해서도 좋은 성능을 보였다.

CTC를 이용한 LSTM RNN 기반 한국어 음성인식 시스템 (LSTM RNN-based Korean Speech Recognition System Using CTC)

  • 이동현;임민규;박호성;김지환
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권1호
    • /
    • pp.93-99
    • /
    • 2017
  • Long Short Term Memory (LSTM) Recurrent Neural Network (RNN)를 이용한 hybrid 방법은 음성 인식률을 크게 향상시켰다. Hybrid 방법에 기반한 음향모델을 학습하기 위해서는 Gaussian Mixture Model (GMM)-Hidden Markov Model (HMM)로부터 forced align된 HMM state sequence가 필요하다. 그러나, GMM-HMM을 학습하기 위해서 많은 연산 시간이 요구되고 있다. 본 논문에서는 학습 속도를 향상하기 위해, LSTM RNN 기반 한국어 음성인식을 위한 end-to-end 방법을 제안한다. 이를 구현하기 위해, Connectionist Temporal Classification (CTC) 알고리즘을 제안한다. 제안하는 방법은 기존의 방법과 비슷한 인식률을 보였지만, 학습 속도는 1.27 배 더 빨라진 성능을 보였다.

Potential of Bidirectional Long Short-Term Memory Networks for Crop Classification with Multitemporal Remote Sensing Images

  • Kwak, Geun-Ho;Park, Chan-Won;Ahn, Ho-Yong;Na, Sang-Il;Lee, Kyung-Do;Park, No-Wook
    • 대한원격탐사학회지
    • /
    • 제36권4호
    • /
    • pp.515-525
    • /
    • 2020
  • This study investigates the potential of bidirectional long short-term memory (Bi-LSTM) for efficient modeling of temporal information in crop classification using multitemporal remote sensing images. Unlike unidirectional LSTM models that consider only either forward or backward states, Bi-LSTM could account for temporal dependency of time-series images in both forward and backward directions. This property of Bi-LSTM can be effectively applied to crop classification when it is difficult to obtain full time-series images covering the entire growth cycle of crops. The classification performance of the Bi-LSTM is compared with that of two unidirectional LSTM architectures (forward and backward) with respect to different input image combinations via a case study of crop classification in Anbadegi, Korea. When full time-series images were used as inputs for classification, the Bi-LSTM outperformed the other unidirectional LSTM architectures; however, the difference in classification accuracy from unidirectional LSTM was not substantial. On the contrary, when using multitemporal images that did not include useful information for the discrimination of crops, the Bi-LSTM could compensate for the information deficiency by including temporal information from both forward and backward states, thereby achieving the best classification accuracy, compared with the unidirectional LSTM. These case study results indicate the efficiency of the Bi-LSTM for crop classification, particularly when limited input images are available.

Flood prediction in the Namgang Dam basin using a long short-term memory (LSTM) algorithm

  • Lee, Seungsoo;An, Hyunuk;Hur, Youngteck;Kim, Yeonsu;Byun, Jisun
    • 농업과학연구
    • /
    • 제47권3호
    • /
    • pp.471-483
    • /
    • 2020
  • Flood prediction is an important issue to prevent damages by flood inundation caused by increasing high-intensity rainfall with climate change. In recent years, machine learning algorithms have been receiving attention in many scientific fields including hydrology, water resources, natural hazards, etc. The performance of a machine learning algorithm was investigated to predict the water elevation of a river in this study. The aim of this study was to develop a new method for securing a large enough lead time for flood defenses by predicting river water elevation using the a long- short-term memory (LSTM) technique. The water elevation data at the Oisong gauging station were selected to evaluate its applicability. The test data were the water elevation data measured by K-water from 15 February 2013 to 26 August 2018, approximately 5 years 6 months, at 1 hour intervals. To investigate the predictability of the data in terms of the data characteristics and the lead time of the prediction data, the data were divided into the same interval data (group-A) and time average data (group-B) set. Next, the predictability was evaluated by constructing a total of 36 cases. Based on the results, group-A had a more stable water elevation prediction skill compared to group-B with a lead time from 1 to 6 h. Thus, the LSTM technique using only measured water elevation data can be used for securing the appropriate lead time for flood defense in a river.

LSTM을 이용한 표면 근전도 분석을 통한 서로 다른 손가락 움직임 분류 정확도 향상 (Improvement of Classification Accuracy of Different Finger Movements Using Surface Electromyography Based on Long Short-Term Memory)

  • 신재영;김성욱;이윤성;이형탁;황한정
    • 대한의용생체공학회:의공학회지
    • /
    • 제40권6호
    • /
    • pp.242-249
    • /
    • 2019
  • Forearm electromyography (EMG) generated by wrist movements has been widely used to develop an electrical prosthetic hand, but EMG generated by finger movements has been rarely used even though 20% of amputees lose fingers. The goal of this study is to improve the classification performance of different finger movements using a deep learning algorithm, and thereby contributing to the development of a high-performance finger-based prosthetic hand. Ten participants took part in this study, and they performed seven different finger movements forty times each (thumb, index, middle, ring, little, fist and rest) during which EMG was measured from the back of the right hand using four bipolar electrodes. We extracted mean absolute value (MAV), root mean square (RMS), and mean (MEAN) from the measured EMGs for each trial as features, and a 5x5-fold cross-validation was performed to estimate the classification performance of seven different finger movements. A long short-term memory (LSTM) model was used as a classifier, and linear discriminant analysis (LDA) that is a widely used classifier in previous studies was also used for comparison. The best performance of the LSTM model (sensitivity: 91.46 ± 6.72%; specificity: 91.27 ± 4.18%; accuracy: 91.26 ± 4.09%) significantly outperformed that of LDA (sensitivity: 84.55 ± 9.61%; specificity: 84.02 ± 6.00%; accuracy: 84.00 ± 5.87%). Our result demonstrates the feasibility of a deep learning algorithm (LSTM) to improve the performance of classifying different finger movements using EMG.