• 제목/요약/키워드: Long-Short Term Memory

검색결과 643건 처리시간 0.023초

Vision-Based Activity Recognition Monitoring Based on Human-Object Interaction at Construction Sites

  • Chae, Yeon;Lee, Hoonyong;Ahn, Changbum R.;Jung, Minhyuk;Park, Moonseo
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.877-885
    • /
    • 2022
  • Vision-based activity recognition has been widely attempted at construction sites to estimate productivity and enhance workers' health and safety. Previous studies have focused on extracting an individual worker's postural information from sequential image frames for activity recognition. However, various trades of workers perform different tasks with similar postural patterns, which degrades the performance of activity recognition based on postural information. To this end, this research exploited a concept of human-object interaction, the interaction between a worker and their surrounding objects, considering the fact that trade workers interact with a specific object (e.g., working tools or construction materials) relevant to their trades. This research developed an approach to understand the context from sequential image frames based on four features: posture, object, spatial features, and temporal feature. Both posture and object features were used to analyze the interaction between the worker and the target object, and the other two features were used to detect movements from the entire region of image frames in both temporal and spatial domains. The developed approach used convolutional neural networks (CNN) for feature extractors and activity classifiers and long short-term memory (LSTM) was also used as an activity classifier. The developed approach provided an average accuracy of 85.96% for classifying 12 target construction tasks performed by two trades of workers, which was higher than two benchmark models. This experimental result indicated that integrating a concept of the human-object interaction offers great benefits in activity recognition when various trade workers coexist in a scene.

  • PDF

LSTM-GRU 모델을 활용한 실시간 수위 예측 시스템 구현 (Implementation of real-time water level prediction system using LSTM-GRU model)

  • 조민우;정한결;박범진;임하란;임인애;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.216-218
    • /
    • 2022
  • 이상 기후로 인한 자연 재해는 지속적으로 증가하고 있으며, 자연재해 중 가장 많은 피해를 입히는 유형은 폭우, 태풍 등으로 인한 수해 피해로 이러한 재해는 홍수를 동반하여 더욱 큰 피해를 입히기도 한다. 따라서, 홍수 피해를 줄이기 위해 본 논문에서는 LSTM과 GRU를 활용하여 실시간으로 홍수의 주요 파라미터인 수위를 실시간으로 예측할 수 있는 시스템을 제안한다. 홍수 예측을 위해 사용된 입력 데이터는 하천의 상류 및 하류 수위, 기온, 습도, 강수량이 사용되며, 사전에 학습된 LSTM-GRU 모델을 통해 실시간 예측을 진행한다. 입력 데이터는 과거 20시간의 데이터를 활용하여 향후 3시간의 수위를 예측한다. 본 논문에서 제안한 시스템을 통해 위험도 판별 기능을 추가하고 홍수에 노출된 사람들에게 대피 명령을 내릴 수 있다면 홍수로 인한 많은 피해를 줄일 수 있을 것으로 사료된다.

  • PDF

ProphetNet 모델을 활용한 시계열 데이터의 열화 패턴 기반 Health Index 연구 (A Study on the Health Index Based on Degradation Patterns in Time Series Data Using ProphetNet Model)

  • 원선주;김용수
    • 산업경영시스템학회지
    • /
    • 제46권3호
    • /
    • pp.123-138
    • /
    • 2023
  • The Fourth Industrial Revolution and sensor technology have led to increased utilization of sensor data. In our modern society, data complexity is rising, and the extraction of valuable information has become crucial with the rapid changes in information technology (IT). Recurrent neural networks (RNN) and long short-term memory (LSTM) models have shown remarkable performance in natural language processing (NLP) and time series prediction. Consequently, there is a strong expectation that models excelling in NLP will also excel in time series prediction. However, current research on Transformer models for time series prediction remains limited. Traditional RNN and LSTM models have demonstrated superior performance compared to Transformers in big data analysis. Nevertheless, with continuous advancements in Transformer models, such as GPT-2 (Generative Pre-trained Transformer 2) and ProphetNet, they have gained attention in the field of time series prediction. This study aims to evaluate the classification performance and interval prediction of remaining useful life (RUL) using an advanced Transformer model. The performance of each model will be utilized to establish a health index (HI) for cutting blades, enabling real-time monitoring of machine health. The results are expected to provide valuable insights for machine monitoring, evaluation, and management, confirming the effectiveness of advanced Transformer models in time series analysis when applied in industrial settings.

해양기상부표의 센서 데이터 품질 향상을 위한 프레임워크 개발 (Development of a Framework for Improvement of Sensor Data Quality from Weather Buoys)

  • 이주용;이재영;이지우;신상문;장준혁;한준희
    • 산업경영시스템학회지
    • /
    • 제46권3호
    • /
    • pp.186-197
    • /
    • 2023
  • In this study, we focus on the improvement of data quality transmitted from a weather buoy that guides a route of ships. The buoy has an Internet-of-Thing (IoT) including sensors to collect meteorological data and the buoy's status, and it also has a wireless communication device to send them to the central database in a ground control center and ships nearby. The time interval of data collected by the sensor is irregular, and fault data is often detected. Therefore, this study provides a framework to improve data quality using machine learning models. The normal data pattern is trained by machine learning models, and the trained models detect the fault data from the collected data set of the sensor and adjust them. For determining fault data, interquartile range (IQR) removes the value outside the outlier, and an NGBoost algorithm removes the data above the upper bound and below the lower bound. The removed data is interpolated using NGBoost or long-short term memory (LSTM) algorithm. The performance of the suggested process is evaluated by actual weather buoy data from Korea to improve the quality of 'AIR_TEMPERATURE' data by using other data from the same buoy. The performance of our proposed framework has been validated through computational experiments based on real-world data, confirming its suitability for practical applications in real-world scenarios.

시계열 예측 모델을 활용한 암호화폐 투자 전략 개발 (Developing Cryptocurrency Trading Strategies with Time Series Forecasting Model)

  • 김현선;안재준
    • 산업경영시스템학회지
    • /
    • 제46권4호
    • /
    • pp.152-159
    • /
    • 2023
  • This study endeavors to enrich investment prospects in cryptocurrency by establishing a rationale for investment decisions. The primary objective involves evaluating the predictability of four prominent cryptocurrencies - Bitcoin, Ethereum, Litecoin, and EOS - and scrutinizing the efficacy of trading strategies developed based on the prediction model. To identify the most effective prediction model for each cryptocurrency annually, we employed three methodologies - AutoRegressive Integrated Moving Average (ARIMA), Long Short-Term Memory (LSTM), and Prophet - representing traditional statistics and artificial intelligence. These methods were applied across diverse periods and time intervals. The result suggested that Prophet trained on the previous 28 days' price history at 15-minute intervals generally yielded the highest performance. The results were validated through a random selection of 100 days (20 target dates per year) spanning from January 1st, 2018, to December 31st, 2022. The trading strategies were formulated based on the optimal-performing prediction model, grounded in the simple principle of assigning greater weight to more predictable assets. When the forecasting model indicates an upward trend, it is recommended to acquire the cryptocurrency with the investment amount determined by its performance. Experimental results consistently demonstrated that the proposed trading strategy yields higher returns compared to an equal portfolio employing a buy-and-hold strategy. The cryptocurrency trading model introduced in this paper carries two significant implications. Firstly, it facilitates the evolution of cryptocurrencies from speculative assets to investment instruments. Secondly, it plays a crucial role in advancing deep learning-based investment strategies by providing sound evidence for portfolio allocation. This addresses the black box issue, a notable weakness in deep learning, offering increased transparency to the model.

풍력터빈 상태진단에 적용된 다양한 신경망 모델의 유효성 비교 (Comparison of the effectiveness of various neural network models applied to wind turbine condition diagnosis)

  • 응고만투안;김창현;딘민차우;박민원
    • 한국산업정보학회논문지
    • /
    • 제28권5호
    • /
    • pp.77-87
    • /
    • 2023
  • 재생 에너지 생성에서 중요한 역할을 하는 풍력 터빈은 작동 상태를 정확하게 평가하는 것이 에너지 생산을 극대화하고 가동 중지 시간을 최소화하는 데 매우 중요하다. 이 연구는 풍력 터빈 상태 진단을 위한 다양한 신경망 모델의 비교 분석을 수행하고 센서 측정 및 과거 터빈 데이터가 포함된 데이터 세트를 사용하여 효율성을 평가하였다. 분석을 위해 2MW 이중 여자 유도 발전기 기반 풍력 터빈 시스템(모델 HQ2000)에서 수집된 감시 제어 및 데이터 수집 데이터를 활용했다. 활성화함수, 은닉층 등을 고려하여 인공신경망, 장단기기억, 순환신경망 등 다양한 신경망 모델을 구축하였다. 대칭 평균 절대 백분율 오류는 모델의 성능을 평가하는 데 사용되었다. 평가를 바탕으로 풍력 터빈 상태 진단을 위한 신경망 모델의 상대적 효율성에 관한 결론이 도출되었다. 본 연구결과는 풍력발전기의 상태진단을 위한 모델선정의 길잡이가 되며, 고도의 신경망 기반 기법을 통한 신뢰성 및 효율성 향상에 기여하고, 향후 관련연구의 방향을 제시하는데 기여한다.

Deep Learning-based Rheometer Quality Inspection Model Using Temporal and Spatial Characteristics

  • Jaehyun Park;Yonghun Jang;Bok-Dong Lee;Myung-Sub Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권11호
    • /
    • pp.43-52
    • /
    • 2023
  • 고무생산업체에서 생산된 고무는 레오미터 측정을 통해 품질 적합성 검사가 이루어진 후, 자동차 부품을 위한 2차 가공으로 이어진다. 그러나 레오미터 검사는 인간에 의해 진행되고 있으며, 숙련된 작업자에게 매우 의존적이라는 단점이 존재한다. 이러한 문제점을 해결하기 위해 본 논문에서는 딥러닝 기반 레오미터 품질 검사 시스템을 제안한다. 제안된 시스템은 레오미터의 시간적, 공간적 특성을 활용하기 위해 LSTM과 CNN을 조합하였고, 각 고무의 배합재료를 보조(Auxiliary) 데이터 입력으로 사용해 하나의 모델에서 다양한 고무 제품의 품질 적합성 검사가 가능하도록 구현하였다. 제안된 기법은 30,000개의 데이터셋으로 그 성능을 학습 및 검사하였으며, 평균 f1-점수를 0.9942 달성하여 그 우수성을 증명하였다.

통합적인 인공 신경망 모델을 이용한 발틱운임지수 예측 (Predicting the Baltic Dry Bulk Freight Index Using an Ensemble Neural Network Model)

  • 소막
    • 무역학회지
    • /
    • 제48권2호
    • /
    • pp.27-43
    • /
    • 2023
  • 해양 산업은 글로벌 경제 성장에 매우 중요한 역할을 하고 있다. 특히 벌크운임지수인 BDI는 글로벌 상품 가격과 매우 밀접한 상관 관계를 지니고 있기 때문에 BDI 예측 연구의 중요성이 증가하고 있다. 본연구에서는 글로벌 시장 상황 불안정성으로 인한 정확한 BDI 예측 어려움을 해결하고자 머신러닝 전략을 도입하였다. CNN과 LSTM의 이점을 결합한 예측 모델을 설정하였고, 모델 적합도를 위해 27년간의 일일 BDI 데이터를 수집하였다. 연구 결과, CNN을 통해 추출된 BDI 특징을 기반으로 LSTM이 BDI를 R2 값 94.7%로 정확하게 예측할 수 있었다. 본 연구는 해운 경제지표 연구 분야에서 새로운 머신 러닝 통합 접근법을 적용했을 뿐만 아니라 해운 관련기관과 금융 투자 분야의 위험 관리 의사결정에 대한 시사점을 제공한다는 점에서 그 의의가 있다.

A Method for Generating Malware Countermeasure Samples Based on Pixel Attention Mechanism

  • Xiangyu Ma;Yuntao Zhao;Yongxin Feng;Yutao Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권2호
    • /
    • pp.456-477
    • /
    • 2024
  • With information technology's rapid development, the Internet faces serious security problems. Studies have shown that malware has become a primary means of attacking the Internet. Therefore, adversarial samples have become a vital breakthrough point for studying malware. By studying adversarial samples, we can gain insights into the behavior and characteristics of malware, evaluate the performance of existing detectors in the face of deceptive samples, and help to discover vulnerabilities and improve detection methods for better performance. However, existing adversarial sample generation methods still need help regarding escape effectiveness and mobility. For instance, researchers have attempted to incorporate perturbation methods like Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD), and others into adversarial samples to obfuscate detectors. However, these methods are only effective in specific environments and yield limited evasion effectiveness. To solve the above problems, this paper proposes a malware adversarial sample generation method (PixGAN) based on the pixel attention mechanism, which aims to improve adversarial samples' escape effect and mobility. The method transforms malware into grey-scale images and introduces the pixel attention mechanism in the Deep Convolution Generative Adversarial Networks (DCGAN) model to weigh the critical pixels in the grey-scale map, which improves the modeling ability of the generator and discriminator, thus enhancing the escape effect and mobility of the adversarial samples. The escape rate (ASR) is used as an evaluation index of the quality of the adversarial samples. The experimental results show that the adversarial samples generated by PixGAN achieve escape rates of 97%, 94%, 35%, 39%, and 43% on the Random Forest (RF), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Convolutional Neural Network and Recurrent Neural Network (CNN_RNN), and Convolutional Neural Network and Long Short Term Memory (CNN_LSTM) algorithmic detectors, respectively.

KOSPI index prediction using topic modeling and LSTM

  • Jin-Hyeon Joo;Geun-Duk Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권7호
    • /
    • pp.73-80
    • /
    • 2024
  • 본 연구는 토픽 모델링과 장단기 기억(LSTM) 신경망을 결합하여 한국 종합주가지수(KOSPI) 예측의 정확도를 향상하는 방법을 제안한다. 본 논문에서는 LDA(Latent Dirichlet Allocation) 기법을 이용해 금융 뉴스 데이터에서 금리 인상 및 인하와 관련된 10개의 주요 주제를 추출하고, 추출된 주제를 과거 KOSPI 지수와 함께 LSTM 모델에 입력하여 KOSPI 지수를 예측하는 모델을 제안한다. 제안된 모델은 과거 KOSPI 지수를 LSTM 모델에 입력하여 시계열 예측 방법과 뉴스 데이터를 입력하여 토픽 모델링하는 방법을 결합하여 KOSPI 지수를 예측하는 특성을 가진다. 제안된 모델의 성능을 검증하기 위해, 본 논문에서는 LSTM의 입력 데이터의 종류에 따라 4개의 모델(LSTM_K 모델, LSTM_KNS 모델, LDA_K 모델, LDA_KNS 모델)을 설계하고 각 모델의 예측 성능을 제시하였다. 예측 성능을 비교한 결과, 금융 뉴스 주제 데이터와 과거 KOSPI 지수 데이터를 입력으로 하는 LSTM 모델(LDA_K 모델)이 가장 낮은 RMSE(Root Mean Square Error)를 기록하여 가장 좋은 예측 성능을 보였다.