• Title/Summary/Keyword: Long non-coding RNA

Search Result 72, Processing Time 0.02 seconds

Aberrant Expression of CCAT1 Regulated by c-Myc Predicts the Prognosis of Hepatocellular Carcinoma

  • Zhu, Hua-Qiang;Zhou, Xu;Chang, Hong;Li, Hong-Guang;Liu, Fang-Feng;Ma, Chao-Qun;Lu, Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5181-5185
    • /
    • 2015
  • Background: CCAT1 has been reported to be linked with pathogenesis of malignancies including colon cancer and gastric cancer. However, the regulatory effect of CCAT1 in hepatocellular carcinoma (HCC) remains unclear. The purpose of this research was to identify any role of CCAT1 in the progression of HCC. Materials and Methods: Real time-PCR was performed to test the relative expression of CCAT1 in HCC tissues. A computation screen of CCAT1 promoter was conducted to search for transcription-factor-binding sites. The association of c-Myc with CCAT1 promoter in vivo was tested by Pearson correlation analysis and chromatin immunoprecipitation assay. Additionally, Kaplan-Meier analysis and Cox proportional hazards analyses were performed. Results: c-Myc directly binds to the E-box element in the promoter region of CCAT, and when ectopically expressed increases promoter activity and expression of CCAT1. Moreover, Kaplan-Meier analysis demonstrated that the patients with low expression of CCAT1 demonstrated better overall and relapse-free survival compared with the high expression group. Cox proportional hazards analyses showed that CCAT1 expression was an independent prognostic factor for HCC patients. Conclusions: The findings demonstrated CCAT1, acting as a potential biomarker in predicting the prognosis of HCC, is regulated by c-Myc.

Cloning of a Glutathione S-Transferase Decreasing During Differentiation of HL60 Cell Line (HL6O 세포주의 분화 시 감소 특성을 보이는 Glutathione S-Transferase의 클로닝)

  • Kim Jae Chul;Park In Kyu;Lee Kyu Bo;Sohn Sang Kyun;Kim Moo Kyu;Kim Jung Chul
    • Radiation Oncology Journal
    • /
    • v.17 no.2
    • /
    • pp.151-157
    • /
    • 1999
  • Purpose : By sequencing the Erpressed Sequence Tags of human 걸ermal papilla CDNA library, we identified a clone named K872 of which the expression decreased during differentiation of HL6O cell line. Materials and Methods : K872 plasmid DNA was isolated according to QIA plasmid extraction kit (Qiagen GmbH, Germany). The nucleotide sequencing was performed by Sanger's method with K872 plasmid DNA. The most updated GenBank EMBL necleic acid banks were searched through the internet by using BLAST (Basic Local Alignment Search Tools) program. Nothern bots were performed using RNA isolated from various human tissues and cancer cell lines. The gene expression of the fusion protein was achieved by His-Patch Thiofusicn expression system and the protein product was identified on SDS-PAGE. Results : K872 clone is 1006 nucleotides long, and has a coding region of 675 nucleotides and a 3' non-coding region of 280 nucleotides. The presumed open reading frame starting at the 5' terminus of K872 encodes 226 amino acids, including the initiation methionine residue. The amino acid sequence deduced from the open reading frame of K872 shares $70\%$, identity with that of rat glutathione 5-transferase kappa 1 (rGSTKl). The transcripts were expressed in a variety of human tissues and cancer cells. The levels of transcript were relatively high in those tissues such as heart, skeletal muscle, and peripheral blood leukocyte. It is noteworthy that K872 was found to be abundantly expressed in coloreetal cancer and melanoma cell lines. Conclusion : Homology search result suggests that K872 clone is the human homolog of the rGSTK1 which is known to be involved in the resistance of cytotoxic therapy. We propose that meticulous functional analysis should be followed to confirm that.

  • PDF