• Title/Summary/Keyword: Long Bearing

Search Result 440, Processing Time 0.029 seconds

A Design of an Automotive Wheel Bearing Unit for Long Life (자동차 휠 베어링 유닛의 장수명 설계)

  • Yun, Gi-Chan;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.319-328
    • /
    • 2000
  • This paper presents a new design method of the 1 generation wheel bearing unit using a numerical optimization technique in order to increase bearing fatigue life. For calculating the fatigue life, a method of load analysis is studied on the automotive wheel bearing system. The design variables selected are ball size, initial contact angle, number of balls, pitch diameter, pre-load, and distance between ball centers. The method of feasible directions in ADS (Automated Design Synthesis) is utilized to automatically find the optimum design variables. To validate the design method, a computer program is developed and applied to a practical passenger car model. The optimum design results demonstrated the effectiveness of the proposed design method showing that the system life of the optimally designed wheel bearing unit is enhanced in comparison with that of the initial ones within the given available design space.

Finite Element Analysis on the Shaft Fitting to Inner Raceway of Radial Ball Bearing (레이디얼 볼베어링의 내륜 끼워맞춤에 관한 유한요소해석)

  • Ko, Byung-Du;Lee, Ha-Sung
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • The main goal of this paper is to establish an interference tolerance for determining optimal amount of clearance in the shaft-bearing system supported by radial ball bearings. The 2-D frictional contact model was employed for the FE analysis between the shaft and the inner raceway. Several examples were simulated using different material properties for the solid shaft. Efforts were focused on the deformation applied in the radial direction to select suitable bearings. The analysis results showed that the initial axial preload applied on the bearings plays a significant role to reduce bearing fatigue life. The proposed design parameters obtained by numerical simulations can approximately predict a rate of bearing life reduction as a function of shaft diameter ratio. This analysis can also be used to calculate the optimal initial radial clearance in order to obtain a shaft-bearing system design for high accuracy and long life.

  • PDF

A Study on Lubrication Characteristic of the Hydrostatic Bearing In Swash Plate Type Piston Motor (사판식 피스톤 모터의 정압베어링 윤활특성에 관한 연구)

  • Lee, Yong-Bum;Kim, Kwang-Min
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.5-9
    • /
    • 2011
  • The hydraulic piston using a hydrostatic bearing has been used widely due to its satisfying performance at very high pressurized circumstance and relative higher power density in comparison to conventional one. For high pressurization, enhanced efficiency and long durability of the hydraulic piston, the design of hydrostatic bearing is at issue, which is installed between piston shoe and swash plate. The performance of the hydrostatic bearing is influenced significantly by the assembly of the piston shoe consisting of circular land and recess. In this study, to estimate the performance of the hydrostatic bearing, the characteristics for lubrication of the assembly of the piston shoe were investigated by measuring a leakage rate of hydraulic fluid under an experimental condition, where a rotating velocity of the piston, hydraulic pressure and temperature of the hydraulic fluid were changed systematically. In addition, a film thickness of the hydraulic fluid on the piston shoe was measured and compared to theoretical one.

Reaction force of ship stern bearing in hull large deformation based on stochastic theory

  • Zhang, Sheng-dong;Long, Zhi-lin;Yang, Xiu-ying
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.723-732
    • /
    • 2020
  • A theoretical calculation model for ship stern bearings with large hull deformation is established and validated theoretically and experimentally. A hull simulation model is established to calculate hull deformations corresponding to the reaction force of stern bearings under multi-factor and multi-operating conditions. The results show that in the condition of wave load, hull deformation shows randomness; the aft stern tube bearing load obeys the Gaussian distribution and its value increases significantly compared with the load under static, and the probability of aft stern tube bearing load greater than 1 is 65.7%. The influence laws and levels between hull deformation and bearing reaction force are revealed, and suggestions for ship stern bearing specifications are proffered accordingly.

A Novel High Precision Electromagnetic Suspension for Long-Stroke Movement and Its Performance Evaluation

  • Lee, Ki-Chang;Moon, Seokhwan;Ha, Hyunuk;Park, Byoung-Gun;Kim, Ji-Won;Baek, Jun-Young;Lee, Min-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.514-522
    • /
    • 2014
  • A new type of high precision electromagnetic suspension (EMS) which can support heavy tray along long stroke rail is proposed in this paper. Compared with the conventional EMS, the suggested moving-core typed EMS has the levitation electromagnets (EMs) on the fixed rail. This scheme has high load capability caused by iron-core and enables simple tray structure. Also it does not have precision degradation caused by heat generation from EMs, which is a drawback of conventional EMS. With these merits, the proposed EMS can be an optimal contactless linear bearing in next generation flat panel display (FPD) manufacturing process if the ability of long stroke movement is proved. So a special Section Switching Algorithm (SSA) is derived from the resultant force and moment equations of the levitated tray which enables long stroke movement of the tray. In order to verify the feasibility of the suggested SSA, a simple test-setup of the EMS with 2 Section-changes is made up and servo-controlled in the simulation and experiment. The simulation shows the perfect changeover the EMs, and the experiment shows overall control performance of under ${\pm}40{\mu}m$ gap deviations. These results reveal that the newly suggested contactless linear bearing can simultaneously achieve high load capability and precision gap control as well as long stroke.

Full-scale tests and analytical model of the Teflon-based lead rubber isolation bearings

  • Wang, Lu;Oua, Jin;Liu, Weiqing;Wang, Shuguang
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.809-822
    • /
    • 2013
  • Base isolation is widely used in seismic resisting buildings due to its low construction cost, high reliability, mature theory and convenient usage. However, it is difficult to design the isolation layer in high-rise buildings using the available bearings because high-rise buildings are characterized with long period, low horizontal stiffness, and complex re-distribution of the internal forces under earthquake loads etc. In this paper, a simple and innovative isolation bearing, named Teflon-based lead rubber isolation bearing, is developed to address the mentioned problems. The Teflon-based lead rubber isolation bearing consists of friction material and lead rubber isolation bearing. Hence, it integrates advantages of friction bearings and lead rubber isolation bearings so that improves the stability of base isolation system. An experimental study was conducted to validate the effectiveness of this new bearing. The effects of vertical loading, displacement amplitude and loading frequency on the force-displacement relationship and energy dissipation capacity of the Teflon-based lead rubber isolation bearing were studied. An analytical model was also proposed to predict the force-displacement relationship of the new bearing. Comparison of analytical and experimental results showed that the analytical model can accurately predict the force-displacement relationship and elastic shear deflection of the Teflon-based lead rubber isolation bearings.

Application of Foil Air Bearing to Small Gas Turbine Engine for UAV (무인기용 소형 가스터빈 엔진에 대한 포일 공기 베어링 적용 연구)

  • Kim, Kyeong-Su;Lee, Si-Woo;Kim, Seung-Woo;Lee, In
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.261-266
    • /
    • 2003
  • Foil air bearing, which is a noncontact bearing utilizing viscosity of operating fluid and elastic deformation of foil structure, has several advantages over rolling element bearings in terms of oilless environment, long life, high speed operation, and high temperature application over $500^{\circ}C$ . Recently advanced researches are actively being performed for the application to the extreme temperature such as gas turbines, as well as conventional small turbo machinery. In this paper, the principle of foil air bearing is introduced and a feasibility study to adopt a foil bearing as the turbine bearing of 65 HP turbo shaft engine, which is under development for UAV, is presented.

  • PDF

Frictional and Electrical Characteristics of Herringbone Grooved Bearing for Scanner motor

  • Jeong, Sung-Hoon;Lee, Young-Ze
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.146-149
    • /
    • 2001
  • Recently, laser printers have been developed to have high-speed laser scanner with hydrodynamic bearings. Among the bearings, herringbone grooved bearing (HGB) produces hydrodynamic pressure by high-speed rotating and so make the surfaces between the shaft and sleeve separated. Accordingly, the bearings with non-contact rotation are suitable to high-speed rotating and have long bearing life and reliability. HGB is a kind of journal bearing and uses oil for a lubricant. HGB has excellent stiffness and load carrying capacity. Also, HGB is leakage-free due to groove pumping action. Consequently, HGB is valuable to be applied to high-performance devices such as hard disk drive, copier, and so on.

  • PDF

The Relationship between Testing Period and Structural Safety on toad Bearing Test of Bridges (교량안전진단주기와 구조적 안전도의 상관관계)

  • 방명석
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.102-106
    • /
    • 2002
  • The Act on Safety Management of Social Assets was established on 1995 and revised on 1999 to relieve maintenance cost of managing offices. The provision for load bearing test before opening was deleted and the number of load bearing test after opening was reduced in the Revised Act on 1999. The effect of revision is the main concern in this study. 176 technical reports on load bearing test of long span bridges are analyzed. The results show that various structural defects are inherent in recent bridges constructed since 1995. So the preservation of provisions deleted in original act is needed up to now.

A Study on 2-Dimensional Sound Source Tracking System IV - Mainly on Approximation of the Relative Bearing and Distance - (2차원적 음원추적에 관한 연구IV -음원위치의 근사적 결정법을 중심으로 -)

  • 문성배;전승환
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.4
    • /
    • pp.371-379
    • /
    • 2001
  • We have reported the new measurement system which was substituted digital filter for the analog filter in order to develop the optimal system that could find the time delay between each sensors with high accuracy. And also we have confirmed through the experiments that the accuracy of measurements were differentiated by the methods what kind of digital filter had been adopted. This paper suggests two algorithms which approximate the sound source's bearing and distance. One is that sound source's relative bearing can be approximately regarded as the gradient of hyperbolic asymptote, the other is that the source's range can be approximated under the condition of a long range source relative to the sensor's interval. And a series of experiments were carried out with the source's distance 22.42meters and the random bearing interval within the limits of $-90^{\circ}$~$+90^{\circ}$. As a result, we have recognized that the approximation methods could measure the bearing and distance with higher accuracy than the method using trigonometric relation could do.

  • PDF