• 제목/요약/키워드: Logistic models

Search Result 829, Processing Time 0.434 seconds

Development of Standardized Predictive Models for Traditional Korean Medical Diagnostic Pattern Identification in Stroke Subjects: A Hospital-based Multi-center Trial

  • Jung, Woo-Sang;Cho, Seung-Yeon;Park, Seong-Uk;Moon, Sang-Kwan;Park, Jung-Mi;Ko, Chang-Nam;Cho, Ki-Ho;Kwon, Seungwon
    • 대한한의학회지
    • /
    • 제40권4호
    • /
    • pp.49-60
    • /
    • 2019
  • Objectives: To develop a standardized diagnostic pattern identification equation for stroke patients, our group conducted a study to derive the predictive logistic equations. However, the sample size was relatively small. In the current study, we aimed to derive new predictive logistic equations for each diagnostic pattern using an expanded number of subjects. Methods: This study was a hospital-based multi-center trial recruited stroke patients within 30 days of symptom onset. Patients' general information, and the variables related to diagnostic pattern identification were measured. The diagnostic pattern of each patient was identified independently by two Korean Medicine Doctors. To derive a predictive model for pattern identification, binary logistic regression analysis was applied. Results: Among the 1,251 patients, 385 patients (30.8%) had the Fire Heat Pattern, 460 patients (36.8%) the Phlegm Dampness Pattern, 212 patients (16.9%) the Qi Deficiency Pattern, and 194 patients (15.5%) the Yin Deficiency Pattern. After the regression analysis, the predictive logistic equations for each pattern were determined. Conclusion: The predictive equations for Fire Heat, Phlegm Dampness, Qi Deficiency, and Yin Deficiency would be useful to determine individual stroke patients' pattern identification in the clinical setting. However, further studies using objective measurements are necessary to validate these data.

Log-Logistic 분포 모형에 근거한 소프트웨어 최적방출시기에 관한 비교연구 (The Comparative Study of Software Optimal Release Time Based on Log-Logistic Distribution)

  • 김희철
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권7호
    • /
    • pp.1-9
    • /
    • 2008
  • 본 연구에서는 소프트웨어 제품을 개발하여 테스팅을 거친 후 사용자에게 인도하는 시기를 결정하는 방출문제에 대하여 연구되었다. 소프트웨어의 결함을 제거하거나 수정 작업 중에도 새로운 결함이 발생될 가능성이 있는 무한 고장수를 가진 비동질적인 포아송 과정에 기초하고 수명분포는 단위당 고장발생률이 증가하다가 감소하는 속성을 가진 로그-로지스틱 분포를 이용한 최적 방출시기에 관한 문제를 제시하여 소프트웨어 요구 신뢰도를 만족시키고 소프트웨어 개발 및 유지 총비용을 최소화시키는 최적 소프트웨어 방출 정책에 대하여 논의 되었다. 본 논문의 수치적인 예에서는 고장간격 시간자료를 적용하고 모수추정 방법은 최우추정법과 추세분석을 통하여 자료의 효율성을 입증한 후 최적 방출시기를 추정하였다.

  • PDF

기계학습을 활용한 도로비탈면관리시스템 데이터 품질강화에 관한 연구 (The Study for Improvement of Data-Quality of Cut-Slope Management System Using Machine Learning)

  • 이세혁;김승현;우용훈;문재필;양인철
    • 지질공학
    • /
    • 제31권1호
    • /
    • pp.31-42
    • /
    • 2021
  • 도로비탈면관리시스템(Cut-Slope Management System, CSMS)은 전국 일반국도 비탈면에 대해 기초·정밀 조사를 바탕으로 데이터베이스를 구축해왔다. 그런데 이러한 데이터는 사람에 의해 기록되기 때문에 데이터 누락 및 오기입 문제가 발생할 수밖에 없다. 본 연구에서는 데이터의 불완전성 문제를 극복하기 위해 여러 머신러닝 기반의 예측모델들을 개발하고 이를 이용한 데이터 품질 강화 가능성을 검토하고자 하였다. 우선 다 범주 문자형 데이터를 수치화하는 과정을 수행하였고, 선정된 데이터 항목들에 대해 다항 로지스틱 회귀분석(Multinomial Logistic Regression)과 심층신경망(Deep-Neural-Network) 기반의 예측모델들을 개발하였다. 그 결과, 심층신경망 모델들의 정확도가 월등히 높은 것으로 나타났다. 향후 개발된 모델들을 활용하여 누락 및 오기입 데이터의 보완이 가능할 것으로 기대된다.

머신러닝 기반의 수도권 지역 고령운전자 차대사람 사고심각도 분류 연구 (Classifying Severity of Senior Driver Accidents In Capital Regions Based on Machine Learning Algorithms)

  • 김승훈;임영빈;김기정
    • 디지털융복합연구
    • /
    • 제19권4호
    • /
    • pp.25-31
    • /
    • 2021
  • 고령화 시대에 따라 고령운전자 역시 증가하고 있으며, 이들에 의한 교통사고 심각성에 대한 관심이 높아지고 있다. 이에 고령운전자에 의한 사고심각도 예측 모형의 필요성이 점차 요구됨에 따라, 본 연구에서는 기계학습 기법을 활용하여 고령운전자에 의한 차대사람 사고심각도 예측을 위한 모형 정립 및 분석을 수행하고자 한다. 이를 위해 4개의 기계학습 알고리즘 (Logistic Model, KNN, RF, SVM)을 활용, 예측 모형을 개발하고 각 결과를 비교하였다. 연구 결과에 따르면 Logistic과 SVM 모형이 상대적으로 높은 예측력을 보였으며, 정확도 측면에서는 RF가 높은 것으로 나타났다. 추가적으로 각 중요 변수들을 이용하여 교차분석을 수행한 후 그 결과를 제시하였다. 본 연구의 결과들은 고령화시대에 고령운전자에 의한 사고심각성을 예방하기 위한 안전정책 및 인프라 개발에 활용될 것으로 판단된다.

로지스틱회귀분석을 이용한 코스닥기업의 부실예측모형 연구 (Failing Prediction Models of KOSDADQ Firms by using of Logistic Regression)

  • 박희정;강호정
    • 한국콘텐츠학회논문지
    • /
    • 제9권3호
    • /
    • pp.305-311
    • /
    • 2009
  • 기업부실 및 그에 따른 도산은 직접적으로는 주주, 종업원, 채권자 등에게 막대한 피해를 주고, 더 나아가 금융기관의 부실화를 초래하는 등 파급효과가 매우 크다. 코스닥 시장에 상장된 기업들은 기술력은 높으나 사업화 가능성이 낮고 자본력이 취약하여 부실화 가능성이 높다. 이에 본 연구는 코스닥기업들 가운데 건전기업과 부실기업을 표본으로 삼아 로지스틱 회귀분석을 이용하여 부실예측모형을 개발하고 검증하였다. 본 연구결과는 첫째, 연도별 모형의 분류정확도는 $76.5%{\sim}77.5%$로 나타났으며. 평균모형의 분류정확도는 $70.6%{\sim}83.4%$로 나타났다. 이들 모형 중 분류정확도가 가장 높은 모형은 부실 3년, 2년, 1년전 평균모형으로 83.4%이다. 둘째, 분류정확도가 가장 높은(부실 3년, 2년, 1년 전) 모형을 선정하여 확인 표본을 대상으로 검증한 결과 예측정확도가 부실 3년 전 71.7%, 부실 2년 전 75.0%, 부실 1년 전 90.0%로 부실 3년 전에서 부실 1년 전으로 갈수록 높은 예측력을 보이고 있다. 특히 부실 1년 전의 경우 90.0%의 높은 예측정확도를 나타내 개발한 모형이 우수한 것으로 판단된다.

상승된 온도 조건에서 물달개비(Monochoria vaginalis)와 올챙이고랭이(Scirpus juncoides)의 출아 및 초기생장 예측 (Prediction of Seedling Emergence and Early Growth of Monochoria vaginalis and Scirpus juncoides under Elevated Temperature)

  • 박민원;김진원;임수현;이인용;김도순
    • 한국잡초학회지
    • /
    • 제30권2호
    • /
    • pp.103-110
    • /
    • 2010
  • 일년생 잡초인 물달개비 및 올챙이고랭이의 출아와 초기생장을 예측하기 위한 모델 구축을 위하여 온도조건을 달리한 식물생장상에서 포트실험을 수행하였다. 이들 잡초의 출아 및 초기생장과 유효적산온도와의 관계를 비선형회귀로 분석한 결과 온도조건에 상관없이 각각 Gompertz 모델 및 logistic 모델로 설명이 잘 되었다. 물달개비 및 올챙이고랭이의 최대 출아율의 50%에 필요한 유효적산온도는 각각 69.3 및 $94.8^{\circ}C$이었으며, 4엽기에 이르는데 필요한 유효 적산온도는 각각 247 및 $234^{\circ}C$이었다. 본 연구에서 개발된 모델로 분석한 결과 평균 기온이 $3^{\circ}C$ 상승하게 되면 이들 잡초의 50% 출아는 물달개비의 경우 1일, 올챙이고랭이의 경우는 2일 빨라지고, 4엽기에 다 다르는 날짜는 이들 잡초 모두 3일이 빨라질 것으로 예측되었다. 따라서 온도상승조건에서 물달개비 및 올챙이고랭이를 효과적으로 방제하기 위해서는 현재의 처리시기보다 약 2-3일 빨라져야 할 것으로 예상된다.

Feasibility of a Clinical-Radiomics Model to Predict the Outcomes of Acute Ischemic Stroke

  • Yiran Zhou;Di Wu;Su Yan;Yan Xie;Shun Zhang;Wenzhi Lv;Yuanyuan Qin;Yufei Liu;Chengxia Liu;Jun Lu;Jia Li;Hongquan Zhu;Weiyin Vivian Liu;Huan Liu;Guiling Zhang;Wenzhen Zhu
    • Korean Journal of Radiology
    • /
    • 제23권8호
    • /
    • pp.811-820
    • /
    • 2022
  • Objective: To develop a model incorporating radiomic features and clinical factors to accurately predict acute ischemic stroke (AIS) outcomes. Materials and Methods: Data from 522 AIS patients (382 male [73.2%]; mean age ± standard deviation, 58.9 ± 11.5 years) were randomly divided into the training (n = 311) and validation cohorts (n = 211). According to the modified Rankin Scale (mRS) at 6 months after hospital discharge, prognosis was dichotomized into good (mRS ≤ 2) and poor (mRS > 2); 1310 radiomics features were extracted from diffusion-weighted imaging and apparent diffusion coefficient maps. The minimum redundancy maximum relevance algorithm and the least absolute shrinkage and selection operator logistic regression method were implemented to select the features and establish a radiomics model. Univariable and multivariable logistic regression analyses were performed to identify the clinical factors and construct a clinical model. Ultimately, a multivariable logistic regression analysis incorporating independent clinical factors and radiomics score was implemented to establish the final combined prediction model using a backward step-down selection procedure, and a clinical-radiomics nomogram was developed. The models were evaluated using calibration, receiver operating characteristic (ROC), and decision curve analyses. Results: Age, sex, stroke history, diabetes, baseline mRS, baseline National Institutes of Health Stroke Scale score, and radiomics score were independent predictors of AIS outcomes. The area under the ROC curve of the clinical-radiomics model was 0.868 (95% confidence interval, 0.825-0.910) in the training cohort and 0.890 (0.844-0.936) in the validation cohort, which was significantly larger than that of the clinical or radiomics models. The clinical radiomics nomogram was well calibrated (p > 0.05). The decision curve analysis indicated its clinical usefulness. Conclusion: The clinical-radiomics model outperformed individual clinical or radiomics models and achieved satisfactory performance in predicting AIS outcomes.

Comparative Study on Growth Patterns of 25 Commercial Strains of Korean Native Chicken

  • Manjula, Prabuddha;Park, Hee-Bok;Yoo, Jaehong;Wickramasuriya, Samiru;Seo, Dong-Won;Choi, Nu-Ri;Kim, Chong Dae;Kang, Bo-Seok;Oh, Ki-Seok;Sohn, Sea-Hwan;Heo, Jung-Min;Lee, Jun-Heon
    • 한국가금학회지
    • /
    • 제43권1호
    • /
    • pp.1-14
    • /
    • 2016
  • Prediction of growth patterns of commercial chicken strains is important. It can provide visual assessment of growth as function of time and prediction body weight (BW) at a specific age. The aim of current study is to compare the three nonlinear functions (i.e., Logistic, Gompertz, and von Betalanffy) for modeling the growth of twenty five commercial Korean native chicken (KNC) strains reared under a battery cage system until 32 weeks of age and to evaluate the three models with regard to their ability to describe the relationship between BW and age. A clear difference in growth pattern among 25 strains were observed and classified in to the groups according to their growth patterns. The highest and lowest estimated values for asymptotic body weight (C) for 3H and 5W were given by von Bertalanffy and Logistic model 4629.7 g for 2197.8 g respectively. The highest estimated parameter for maturating rate (b) was given by Logistic model 0.249 corresponds to the 2F and lowest in von Bertalanffy model 0.094 for 4Y. According to the coefficient of determination ($R^2$) and mean square of error (MSE), Gompertz and von Bertalanffy models were suitable to describe the growth of Korean native chicken. Moreover, von Bertalannfy model was well described the most of KNC growth with biologically meaningful parameter compared to Gompertz model.

Comparison between Parametric and Semi-parametric Cox Models in Modeling Transition Rates of a Multi-state Model: Application in Patients with Gastric Cancer Undergoing Surgery at the Iran Cancer Institute

  • Zare, Ali;Mahmoodi, Mahmood;Mohammad, Kazem;Zeraati, Hojjat;Hosseini, Mostafa;Naieni, Kourosh Holakouie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6751-6755
    • /
    • 2013
  • Background: Research on cancers with a high rate of mortality such as those occurring in the stomach requires using models which can provide a closer examination of disease processes and provide researchers with more accurate data. Various models have been designed based on this issue and the present study aimed at evaluating such models. Materials and Methods: Data from 330 patients with gastric cancer undergoing surgery at Iran Cancer Institute from 1995 to 1999 were analyzed. Cox-Snell Residuals and Akaike Information Criterion were used to compare parametric and semi-parametric Cox models in modeling transition rates among different states of a multi-state model. R 2.15.1 software was used for all data analyses. Results: Analysis of Cox-Snell Residuals and Akaike Information Criterion for all probable transitions among different states revealed that parametric models represented a better fitness. Log-logistic, Gompertz and Log-normal models were good choices for modeling transition rate for relapse hazard (state $1{\rightarrow}state$ 2), death hazard without a relapse (state $1{\rightarrow}state$ 3) and death hazard with a relapse (state $2{\rightarrow}state$ 3), respectively. Conclusions: Although the semi-parametric Cox model is often used by most cancer researchers in modeling transition rates of multistate models, parametric models in similar situations- as they do not need proportional hazards assumption and consider a specific statistical distribution for time to occurrence of next state in case this assumption is not made - are more credible alternatives.

A BRIEF REVIEW OF PREDATOR-PREY MODELS FOR AN ECOLOGICAL SYSTEM WITH A DIFFERENT TYPE OF BEHAVIORS

  • Kuldeep Singh;Teekam Singh;Lakshmi Narayan Mishra;Ramu Dubey;Laxmi Rathour
    • Korean Journal of Mathematics
    • /
    • 제32권3호
    • /
    • pp.381-406
    • /
    • 2024
  • The logistic growth model was developed with a single population in mind. We now analyze the growth of two interdependent populations, moving beyond the one-dimensional model. Interdependence between two species of animals can arise when one (the "prey") acts as a food supply for the other (the "predator"). Predator-prey models are the name given to models of this type. While social scientists are mostly concerned in human communities (where dependency hopefully takes various forms), predator-prey models are interesting for a variety of reasons. Some variations of this model produce limit cycles, an interesting sort of equilibrium that can be found in dynamical systems with two (or more) dimensions. In terms of substance, predator-prey models have a number of beneficial social science applications when the state variables are reinterpreted. This paper provides a quick overview of numerous predator-prey models with various types of behaviours that can be applied to ecological systems, based on a survey of various types of research publications published in the last ten years. The primary source for learning about predator-prey models used in ecological systems is historical research undertaken in various circumstances by various researchers. The review aids in the search for literature that investigates the impact of various parameters on ecological systems. There are also comparisons with traditional models, and the results are double-checked. It can be seen that several older predator-prey models, such as the Beddington-DeAngelis predator-prey model, the stage-structured predator-prey model, and the Lotka-Volterra predator-prey model, are stable and popular among academics. For each of these scenarios, the results are thoroughly checked.