Objectives: To develop a standardized diagnostic pattern identification equation for stroke patients, our group conducted a study to derive the predictive logistic equations. However, the sample size was relatively small. In the current study, we aimed to derive new predictive logistic equations for each diagnostic pattern using an expanded number of subjects. Methods: This study was a hospital-based multi-center trial recruited stroke patients within 30 days of symptom onset. Patients' general information, and the variables related to diagnostic pattern identification were measured. The diagnostic pattern of each patient was identified independently by two Korean Medicine Doctors. To derive a predictive model for pattern identification, binary logistic regression analysis was applied. Results: Among the 1,251 patients, 385 patients (30.8%) had the Fire Heat Pattern, 460 patients (36.8%) the Phlegm Dampness Pattern, 212 patients (16.9%) the Qi Deficiency Pattern, and 194 patients (15.5%) the Yin Deficiency Pattern. After the regression analysis, the predictive logistic equations for each pattern were determined. Conclusion: The predictive equations for Fire Heat, Phlegm Dampness, Qi Deficiency, and Yin Deficiency would be useful to determine individual stroke patients' pattern identification in the clinical setting. However, further studies using objective measurements are necessary to validate these data.
본 연구에서는 소프트웨어 제품을 개발하여 테스팅을 거친 후 사용자에게 인도하는 시기를 결정하는 방출문제에 대하여 연구되었다. 소프트웨어의 결함을 제거하거나 수정 작업 중에도 새로운 결함이 발생될 가능성이 있는 무한 고장수를 가진 비동질적인 포아송 과정에 기초하고 수명분포는 단위당 고장발생률이 증가하다가 감소하는 속성을 가진 로그-로지스틱 분포를 이용한 최적 방출시기에 관한 문제를 제시하여 소프트웨어 요구 신뢰도를 만족시키고 소프트웨어 개발 및 유지 총비용을 최소화시키는 최적 소프트웨어 방출 정책에 대하여 논의 되었다. 본 논문의 수치적인 예에서는 고장간격 시간자료를 적용하고 모수추정 방법은 최우추정법과 추세분석을 통하여 자료의 효율성을 입증한 후 최적 방출시기를 추정하였다.
도로비탈면관리시스템(Cut-Slope Management System, CSMS)은 전국 일반국도 비탈면에 대해 기초·정밀 조사를 바탕으로 데이터베이스를 구축해왔다. 그런데 이러한 데이터는 사람에 의해 기록되기 때문에 데이터 누락 및 오기입 문제가 발생할 수밖에 없다. 본 연구에서는 데이터의 불완전성 문제를 극복하기 위해 여러 머신러닝 기반의 예측모델들을 개발하고 이를 이용한 데이터 품질 강화 가능성을 검토하고자 하였다. 우선 다 범주 문자형 데이터를 수치화하는 과정을 수행하였고, 선정된 데이터 항목들에 대해 다항 로지스틱 회귀분석(Multinomial Logistic Regression)과 심층신경망(Deep-Neural-Network) 기반의 예측모델들을 개발하였다. 그 결과, 심층신경망 모델들의 정확도가 월등히 높은 것으로 나타났다. 향후 개발된 모델들을 활용하여 누락 및 오기입 데이터의 보완이 가능할 것으로 기대된다.
고령화 시대에 따라 고령운전자 역시 증가하고 있으며, 이들에 의한 교통사고 심각성에 대한 관심이 높아지고 있다. 이에 고령운전자에 의한 사고심각도 예측 모형의 필요성이 점차 요구됨에 따라, 본 연구에서는 기계학습 기법을 활용하여 고령운전자에 의한 차대사람 사고심각도 예측을 위한 모형 정립 및 분석을 수행하고자 한다. 이를 위해 4개의 기계학습 알고리즘 (Logistic Model, KNN, RF, SVM)을 활용, 예측 모형을 개발하고 각 결과를 비교하였다. 연구 결과에 따르면 Logistic과 SVM 모형이 상대적으로 높은 예측력을 보였으며, 정확도 측면에서는 RF가 높은 것으로 나타났다. 추가적으로 각 중요 변수들을 이용하여 교차분석을 수행한 후 그 결과를 제시하였다. 본 연구의 결과들은 고령화시대에 고령운전자에 의한 사고심각성을 예방하기 위한 안전정책 및 인프라 개발에 활용될 것으로 판단된다.
기업부실 및 그에 따른 도산은 직접적으로는 주주, 종업원, 채권자 등에게 막대한 피해를 주고, 더 나아가 금융기관의 부실화를 초래하는 등 파급효과가 매우 크다. 코스닥 시장에 상장된 기업들은 기술력은 높으나 사업화 가능성이 낮고 자본력이 취약하여 부실화 가능성이 높다. 이에 본 연구는 코스닥기업들 가운데 건전기업과 부실기업을 표본으로 삼아 로지스틱 회귀분석을 이용하여 부실예측모형을 개발하고 검증하였다. 본 연구결과는 첫째, 연도별 모형의 분류정확도는 $76.5%{\sim}77.5%$로 나타났으며. 평균모형의 분류정확도는 $70.6%{\sim}83.4%$로 나타났다. 이들 모형 중 분류정확도가 가장 높은 모형은 부실 3년, 2년, 1년전 평균모형으로 83.4%이다. 둘째, 분류정확도가 가장 높은(부실 3년, 2년, 1년 전) 모형을 선정하여 확인 표본을 대상으로 검증한 결과 예측정확도가 부실 3년 전 71.7%, 부실 2년 전 75.0%, 부실 1년 전 90.0%로 부실 3년 전에서 부실 1년 전으로 갈수록 높은 예측력을 보이고 있다. 특히 부실 1년 전의 경우 90.0%의 높은 예측정확도를 나타내 개발한 모형이 우수한 것으로 판단된다.
일년생 잡초인 물달개비 및 올챙이고랭이의 출아와 초기생장을 예측하기 위한 모델 구축을 위하여 온도조건을 달리한 식물생장상에서 포트실험을 수행하였다. 이들 잡초의 출아 및 초기생장과 유효적산온도와의 관계를 비선형회귀로 분석한 결과 온도조건에 상관없이 각각 Gompertz 모델 및 logistic 모델로 설명이 잘 되었다. 물달개비 및 올챙이고랭이의 최대 출아율의 50%에 필요한 유효적산온도는 각각 69.3 및 $94.8^{\circ}C$이었으며, 4엽기에 이르는데 필요한 유효 적산온도는 각각 247 및 $234^{\circ}C$이었다. 본 연구에서 개발된 모델로 분석한 결과 평균 기온이 $3^{\circ}C$ 상승하게 되면 이들 잡초의 50% 출아는 물달개비의 경우 1일, 올챙이고랭이의 경우는 2일 빨라지고, 4엽기에 다 다르는 날짜는 이들 잡초 모두 3일이 빨라질 것으로 예측되었다. 따라서 온도상승조건에서 물달개비 및 올챙이고랭이를 효과적으로 방제하기 위해서는 현재의 처리시기보다 약 2-3일 빨라져야 할 것으로 예상된다.
Objective: To develop a model incorporating radiomic features and clinical factors to accurately predict acute ischemic stroke (AIS) outcomes. Materials and Methods: Data from 522 AIS patients (382 male [73.2%]; mean age ± standard deviation, 58.9 ± 11.5 years) were randomly divided into the training (n = 311) and validation cohorts (n = 211). According to the modified Rankin Scale (mRS) at 6 months after hospital discharge, prognosis was dichotomized into good (mRS ≤ 2) and poor (mRS > 2); 1310 radiomics features were extracted from diffusion-weighted imaging and apparent diffusion coefficient maps. The minimum redundancy maximum relevance algorithm and the least absolute shrinkage and selection operator logistic regression method were implemented to select the features and establish a radiomics model. Univariable and multivariable logistic regression analyses were performed to identify the clinical factors and construct a clinical model. Ultimately, a multivariable logistic regression analysis incorporating independent clinical factors and radiomics score was implemented to establish the final combined prediction model using a backward step-down selection procedure, and a clinical-radiomics nomogram was developed. The models were evaluated using calibration, receiver operating characteristic (ROC), and decision curve analyses. Results: Age, sex, stroke history, diabetes, baseline mRS, baseline National Institutes of Health Stroke Scale score, and radiomics score were independent predictors of AIS outcomes. The area under the ROC curve of the clinical-radiomics model was 0.868 (95% confidence interval, 0.825-0.910) in the training cohort and 0.890 (0.844-0.936) in the validation cohort, which was significantly larger than that of the clinical or radiomics models. The clinical radiomics nomogram was well calibrated (p > 0.05). The decision curve analysis indicated its clinical usefulness. Conclusion: The clinical-radiomics model outperformed individual clinical or radiomics models and achieved satisfactory performance in predicting AIS outcomes.
Prediction of growth patterns of commercial chicken strains is important. It can provide visual assessment of growth as function of time and prediction body weight (BW) at a specific age. The aim of current study is to compare the three nonlinear functions (i.e., Logistic, Gompertz, and von Betalanffy) for modeling the growth of twenty five commercial Korean native chicken (KNC) strains reared under a battery cage system until 32 weeks of age and to evaluate the three models with regard to their ability to describe the relationship between BW and age. A clear difference in growth pattern among 25 strains were observed and classified in to the groups according to their growth patterns. The highest and lowest estimated values for asymptotic body weight (C) for 3H and 5W were given by von Bertalanffy and Logistic model 4629.7 g for 2197.8 g respectively. The highest estimated parameter for maturating rate (b) was given by Logistic model 0.249 corresponds to the 2F and lowest in von Bertalanffy model 0.094 for 4Y. According to the coefficient of determination ($R^2$) and mean square of error (MSE), Gompertz and von Bertalanffy models were suitable to describe the growth of Korean native chicken. Moreover, von Bertalannfy model was well described the most of KNC growth with biologically meaningful parameter compared to Gompertz model.
Background: Research on cancers with a high rate of mortality such as those occurring in the stomach requires using models which can provide a closer examination of disease processes and provide researchers with more accurate data. Various models have been designed based on this issue and the present study aimed at evaluating such models. Materials and Methods: Data from 330 patients with gastric cancer undergoing surgery at Iran Cancer Institute from 1995 to 1999 were analyzed. Cox-Snell Residuals and Akaike Information Criterion were used to compare parametric and semi-parametric Cox models in modeling transition rates among different states of a multi-state model. R 2.15.1 software was used for all data analyses. Results: Analysis of Cox-Snell Residuals and Akaike Information Criterion for all probable transitions among different states revealed that parametric models represented a better fitness. Log-logistic, Gompertz and Log-normal models were good choices for modeling transition rate for relapse hazard (state $1{\rightarrow}state$ 2), death hazard without a relapse (state $1{\rightarrow}state$ 3) and death hazard with a relapse (state $2{\rightarrow}state$ 3), respectively. Conclusions: Although the semi-parametric Cox model is often used by most cancer researchers in modeling transition rates of multistate models, parametric models in similar situations- as they do not need proportional hazards assumption and consider a specific statistical distribution for time to occurrence of next state in case this assumption is not made - are more credible alternatives.
The logistic growth model was developed with a single population in mind. We now analyze the growth of two interdependent populations, moving beyond the one-dimensional model. Interdependence between two species of animals can arise when one (the "prey") acts as a food supply for the other (the "predator"). Predator-prey models are the name given to models of this type. While social scientists are mostly concerned in human communities (where dependency hopefully takes various forms), predator-prey models are interesting for a variety of reasons. Some variations of this model produce limit cycles, an interesting sort of equilibrium that can be found in dynamical systems with two (or more) dimensions. In terms of substance, predator-prey models have a number of beneficial social science applications when the state variables are reinterpreted. This paper provides a quick overview of numerous predator-prey models with various types of behaviours that can be applied to ecological systems, based on a survey of various types of research publications published in the last ten years. The primary source for learning about predator-prey models used in ecological systems is historical research undertaken in various circumstances by various researchers. The review aids in the search for literature that investigates the impact of various parameters on ecological systems. There are also comparisons with traditional models, and the results are double-checked. It can be seen that several older predator-prey models, such as the Beddington-DeAngelis predator-prey model, the stage-structured predator-prey model, and the Lotka-Volterra predator-prey model, are stable and popular among academics. For each of these scenarios, the results are thoroughly checked.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.