• Title/Summary/Keyword: Loci of currents

Search Result 2, Processing Time 0.019 seconds

Extended Wing Technique Approach for the Detection of Winding Interturn Faults in Three-phase Transformers

  • Balla, Makarand Sudhakar;Suryawanshi, Hiralal Murlidhar;Choudhari, Bhupesh Nemichand
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.288-297
    • /
    • 2015
  • This paper presents a novel approach to diagnose interturn insulation faults in three-phase transformers that operate at different loading conditions. This approach is based on the loci of instantaneous symmetrical components and requires the measurement of three input primary winding currents and voltages to diagnose faults in the transformer. The effect of unbalance supply conditions, load variations, constructional imbalance, and measurement errors when this methodology is used is also investigated. Wing size or length determines the loading on the transformer. Wing travel and area determine the degree of severity of fault. Experimental results are presented for a 400/200 V, 7.5 kVA transformer to validate this method.

Wing Technique: A Novel Approach for the Detection of Stator Winding Inter-Turn Short Circuit and Open Circuit Faults in Three Phase Induction Motors

  • Ballal, Makarand Sudhakar;Ballal, Deepali Makarand;Suryawanshi, Hiralal M.;Mishra, Mahesh Kumar
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.208-214
    • /
    • 2012
  • This paper presents a novel approach based on the loci of instantaneous symmetrical components called "Wing Shape" which requires the measurement of three input stator currents and voltages to diagnose interturn insulation faults in three phase induction motors operating under different loading conditions. In this methodology, the effect of unbalanced supply conditions, constructional imbalances and measurement errors are also investigated. The sizes of the wings determine the loading on the motor and the travel of the wings while their areas determine the degree of severity of the faults. This approach is also applied to detect open circuit faults or single phasing conditions in induction motors. In order to validate this method, experimental results are presented for a 5 hp squirrel cage induction motor. The proposed technique helps improve the reliability, efficiency, and safety of the motor system and industrial plant. It also allows maintenance to be performed in a more efficient manner, since the course of action can be determined based on the type and severity of the fault.