• Title/Summary/Keyword: Location of Tags

Search Result 125, Processing Time 0.026 seconds

Design and Implementation of Location-based Mobile Bus Guide System using Social Tagging (소셜 태깅 기술을 이용한 위치 기반 모바일 버스 안내 시스템의 설계 및 구현)

  • Shin, Hyun-Jeong;Chang, Byeong-Mo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.2
    • /
    • pp.281-289
    • /
    • 2012
  • The goal of our research is to develop more effective bus information system using user generated information and social tagging. In this research, we have developed a smartphone-based bus guide system using social tagging and awareness of location. It will guide users to the nearby bus stops and provides users with information about the bus lines at the bus stops. Information around bus-stops can also be registered as tags into the system by users and can be utilized for bus information service. Simple keyword search utilizing tagging information can provide users with bus information about destinations.

RFID Indoor Location Recognition Using Neural Network (신경망을 이용한 RFID 실내 위치 인식)

  • Lee, Myeong-hyeon;Heo, Joon-bum;Hong, Yeon-chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.141-146
    • /
    • 2018
  • Recently, location recognition technology has attracted much attention, especially for locating people or objects in an indoor environment without being influenced by the surrounding environment GPS technology is widely used as a method of recognizing the position of an object or a person. GPS is a very efficient, but it does not allow the positions of objects or people indoors to be determined. RFID is a technology that identifies the location information of a tagged object or person using radio frequency information. In this study, an RFID system is constructed and the position is measured using tags. At this time, an error occurs between the actual and measured positions. To overcome this problem, a neural network is trained using the measured and actual position data to reduce the error. In this case, since the number of read tags is not constant, they are not suitable as input values for training the neural network, so the neural network is trained by converting them into center-of-gravity inputs and median value inputs. This allows the position error to be reduce by the neural network. In addition, different numbers of trained data are used, viz. 50, 100, 200 and 300, and the correlation between the number of data input values and the error is checked. When the training is performed using the neural network, the errors of the center-of-gravity input and median value input are compared. It was found that the greater the number of trained data, the lower the error, and that the error is lower when the median value input is used than when the center-of-gravity input is used.

The Monitoring System for Location of Workers Inside a Thermal Power Plant Boiler (화력 발전기 보일러 내부 작업자 위치 모니터링 시스템 개발)

  • Song K.;Yun, C.N.;Shin, Y.H.;Shin, J.H.;Han, S.H.;Jang, D.Y.
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.71-78
    • /
    • 2021
  • There are regularly planned overhaul periods in thermal power plants, which involve the maintenance of the boiler of the power plants. However, thermal power plants workers are always exposed to risk during overhaul periods owing to the narrow space and significant dust inside the boiler. Therefore, it is essential to develop a safety monitoring system that is suitable for operating in this type of environment. In this study, we developed not only a worker three-dimensional (3D)-location monitoring system that can monitor and record the entry/exit of workers, their 3D-location, and fall accidents but also a method to secure the working environment and operation efficiency. This system comprises of a worker tag, which was equipped with an inertial measurement unit, a barometric pressure sensor, and a Bluetooth low energy (BLE), and the tags were given to each worker. In addition, the location of workers inside the boiler was measured using a pedestrian dead reckoning (PDR) method and BLE beacons. The location data of the workers tag were transmitted to the integrated database (DB) server through a gateway, and to the administrator monitoring system. The performance of the system was demonstrated inside an actual thermal power plant boiler, and the accuracy and reliability of the system were verified through a number of repeated tests. These results provide insights on designing a new system for monitoring enclosed spaces.

A Study on the Performane Requirement of Precise Digital Map for Road Lane Recognition (차로 구분이 가능한 정밀전자지도의 성능 요구사항에 관한 연구)

  • Kang, Woo-Yong;Lee, Eun-Sung;Lee, Geon-Woo;Park, Jae-Ik;Choi, Kwang-Sik;Heo, Moon-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.47-53
    • /
    • 2011
  • To enable the efficient operation of ITS, it is necessary to collect location data for vehicles on the road. In the case of futuristic transportation systems like ubiquitous transportation and smart highway, a method of data collection that is advanced enough to incorporate road lane recognition is required. To meet this requirement, technology based on radio frequency identification (RFID) has been researched. However, RFID may fail to yield accurate location information during high-speed driving because of the time required for communication between the tag and the reader. Moreover, installing tags across all roads necessarily incurs an enormous cost. One cost-saving alternative currently being researched is to utilize GNSS (global navigation satellite system) carrierbased location information where available. For lane recognition using GNSS, a precise digital map for determining vehicle position by lane is needed in addition to the carrier-based GNSS location data. A "precise digital map" is a map containing the location information of each road lane to enable lane recognition. At present, precise digital maps are being created for lane recognition experiments by measuring the lanes in the test area. However, such work is being carried out through comparison with vehicle driving information, without definitions being established for detailed performance specifications. Therefore, this study analyzes the performance requirements of a precise digital map capable of lane recognition based on the accuracy of GNSS location information and the accuracy of the precise digital map. To analyze the performance of the precise digital map, simulations are carried out. The results show that to have high performance of this system, we need under 0.5m accuracy of the precise digital map.

Tag Trajectory Generation Scheme for RFID Tag Tracing in Ubiquitous Computing (유비쿼터스 컴퓨팅에서 RFID 태그 추적을 위한 태그 궤적 생성 기법)

  • Kim, Jong-Wan;Oh, Duk-Shin;Kim, Kee-Cheon
    • The KIPS Transactions:PartD
    • /
    • v.16D no.1
    • /
    • pp.1-10
    • /
    • 2009
  • One of major purposes of a RFID system is to track moving objects using tags attached to the objects. Because a tagged object has both location and time information expressed as the location of the reader, we can index the trajectory of the object like existing spatiotemporal objects. More efficient tracking may be possible if a spatiotemporal trajectory can be formed of a tag, but there has not been much research on tag trajectory indexes. A characteristic that distinguishes tags from existing spatiotemporal objects is that a tag creates a separate trajectory in each reader by entering and then leaving the reader. As a result, there is a trajectory interruption interval between readers, in which the tag cannot be located, and this makes it difficult to track the tag. In addition, the point tags that only enter and don't leave readers do not create trajectories, so cannot be tracked. To solve this problem, we propose a tag trajectory index called TR-tree (tag trajectory R-tree in RFID system) that can track a tag by combining separate trajectories among readers into one trajectory. The results show that TR-tree, which overcomes the trajectory interruption superior performance than TPIR-tree and R-tree.

Analysis of Error Propagation in Two-way-ranging-based Cooperative Positioning System (TWR 기반 군집 협업측위 시스템의 오차 전파 분석)

  • Lim, Jeong-Min;Lee, Chang-Eun;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.898-902
    • /
    • 2015
  • Alternative radio-navigation technologies aim at providing continuous navigation solution even if one cannot use GNSS (Global Navigation Satellite System). In shadowing region such as indoor environment, GNSS signal is no longer available and the alternative navigation system should be used together with GNSS to provide seamless positioning. For soldiers in battlefield where GNSS signal is jammed or in street battle, the alternative navigation system should work without positioning infrastructure. Moreover, the radio-navigation system should have scalability as well as high accuracy performance. This paper presents a TWR (Two-Way-Ranging)-based cooperative positioning system (CPS) that does not require location infrastructure. It is assumed that some members of CPS can obtain GNSS-based position and they are called mobile anchors. Other members unable to receive GNSS signal compute their position using TWR measurements with mobile anchors and neighboring members. Error propagation in CPS is analytically studied in this paper. Error budget for TWR measurements is modeled first. Next, location error propagation in CPS is derived in terms of range errors. To represent the location error propagation in the CPS, Location Error Propagation Indicator (LEPI) is proposed in this paper. Simulation results show that location error of tags in CPS is mainly influenced by the number of hops from anchors to the tag to be positioned as well as the network geometry of CPS.

Development Portable Pipe Spool Location-Confirm System Based UHF RFID (UHF RFID기반 이동형 파이프 스풀 위치 인식 시스템 개발)

  • Kim, Jinsuk;Shin, Yongtae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.10
    • /
    • pp.329-336
    • /
    • 2014
  • Pipe spool is the most important element of plant equipment in plant construction site. Currently, the plant construction site manage the pipe spool location and usage history by handwriting. Frequently, the pipe spool is moved to unpredictable places by field workers in many construction sites and in cases like this, the pipe stool is replaced with another similar pipe spool. Since it's hard to determine the exact location of some of the pipe spools, it takes unnecessary time and labour to find the missing pipe spools, which proves that stock management is not under control. The purpose of our system is to make the identification of real-time location of the field pipes possible by attaching UHF RFID tags to the pipe spool, which will be used to connect with UHF RFID reader and antenna on vehicles. A field test conducted by the proposed system resulted in the success rate of 98% and the missing 2% was recuperated by hands-on correction, which proved that stock management through the proposed method can be 100% effective. The proposed system is expected to reduce labour costs and make stock control of assets possible, as well as applicable to similar stock management environments.

Design of Ubiquitous Reference Point for Location Service (위치정보 제공 서비스를 위한 유비쿼터스 기준점 설계 연구)

  • Park, Jae-Min;Oh, Yoon-Seuk;Kang, Jin-A;Kim, Byung-Guk
    • Spatial Information Research
    • /
    • v.15 no.3
    • /
    • pp.301-310
    • /
    • 2007
  • There are 21,000 National Surveying Control Points (NSCP) made of stone for precise surveying nationwide. NSCPs that provide location information are usually buried at the top of a mountain for view points that cannot be used by the public. Recently, according to the growing ubiquitous computing generation, location-based information has become very important and a service that can be easily accessed by the public is needed. In this research, a new type of reference point for a location information service is proposed. It is an Intelligent Reference Point (IRP) equipped with RFID tags and a two-dimensional bar-code system. The IRP system is composed of an electronic tag component, a tag identification component, and an IRP service component. We designed the IRP receiver identifying RFID tag and two-dimensional barcode was designed using a PDA, digital camera, and an RFID receiver. Also designed was IRP input data and input information. Furthermore, the operation software was developed in a PDA for identifying IRP and using IRP the service, and the IRP positioning method was developed using a GIS spatial analysis.

  • PDF

Chondrocutaneous transposition flap for congenital tragal malformation with dystopic cartilage

  • Jeon, Ji-In;Ha, Jeong Hyun;Kim, Sukwha
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.6
    • /
    • pp.405-407
    • /
    • 2019
  • Due to the variety in the shape of dysmorphic cartilage, tragus reconstruction is one of the most challenging goals in otoplasty. The authors describe a method to reconstruct a prominent tragus in a simple way suitable for accounting for the size, shape, and location of the remaining ear. We present a case of tragus deformity in an 11-year-old female patient after a previous excision of pretragal skin tags. There was a small remnant of the deeply located dystopic cartilage in a horizontal orientation. The dystopic cartilage was used to reconstruct the tragus using a chondrocutaneous transposition flap. Only a small portion of the pre-existing cartilage was used to create a chondrocutaneous transposition flap that supplemented the portion of cartilage during tragus reconstruction. The result was a new tragus that showed acceptable improvement in shape, location, and projection. Patients with a small portion of pre-existing cartilage near the tragal wall may benefit from the use of this method for tragus reconstruction.

IR-UWB Location Positioning System with Wireless Synchronization (무선 동기를 이용한 IR-UWB 무선 측위 알고리즘)

  • Kang, Ji-Mymg;Lee, Soon-Woo;Kim, Yong-Hwa;Park, Young-Jin;Kim, Kwan-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.27-32
    • /
    • 2008
  • Impulse Radio Ultra Wide Band (IR-UWB) system can be used to wireless position location system because of its unique very short pulse in the order of nanosecond. A few algorithms have been proposed to calculate location of sensors or tags. In this paper, we compare these algorithms and propose 'TDoA with wireless synchronization' as practical solution. Earlier algorithms need special logic to fix the duration to receive and send pulse or assume synchronization with wire. In proposed method, beacons synchronize each other using impulse and nodes can be made simple and cheap. We evaluated the performance and it shows 50% improved accuracy at the error range of 50cm.