• Title/Summary/Keyword: Location Sensor

Search Result 1,568, Processing Time 0.027 seconds

Design and Implementation of Multi-Sensor-based Vehicle Localization and Tracking System (멀티센서 기반 차량 위치인식 시스템의 설계 및 구현)

  • Jang, Yoon-Ho;Nam, Sang-Kyoon;Bae, Sang-Jun;Sung, Tae-Kyung;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.121-130
    • /
    • 2009
  • In this paper, Gaussian probability distribution model based multi-sensor data fusion algorithm is proposed for a vehicular location awareness system. Conventional vehicular location awareness systems are operated by GPS (Global Positioning System). However, the conventional system is not working in the indoor of building or urban area where the receiver is difficult to receive the signal from satellites. A method which is combined GPS and UWB (Ultra Wide-Band) has developed to improve this problem. However, vehicular is difficult to receive seamless location information since the measurement systems by both GPS and UWB convert the vehicle's movement information separately at each sensor. In this paper, normalized probability distribution model based Hybrid UWB/GPS is proposed by utilizing GPS location data and UWB sensor data. Therefore the proposed system provides information with seamless and location flexible properties. The proposed system tested by Ubisense and Asen GPS in the $12m{\times}8m$ outdoor environments. As a result, the proposed system has improved performance for accurateness and connection ability between devices to support various CNS (Car Navigation System).

  • PDF

A Network Sensor Location Model Considering Discrete Characteristics of Data Collection (데이터 수집의 이산적 특성을 고려한 네트워크 센서 위치 모형)

  • Yang, Jaehwan;Kho, Seung-Young;Kim, Dong-Kyu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.5
    • /
    • pp.38-48
    • /
    • 2017
  • Link attributes, such as speed, occupancy, and flow, are essential factors for transportation planning and operation. It is, therefore, one of the most important decision-making problems in intelligent transport system (ITS) to determine the optimal location of a sensor for collecting the information on link attributes. This paper aims to develop a model to determine the optimal location of a sensor to minimize the variability of traffic information on whole networks. To achieve this, a network sensor location model (NSLM) is developed to reflect discrete characteristics of data collection. The variability indices of traffic information are calculated based on the summation of diagonal elements of the variance-covariance matrix. To assess the applicability of the developed model, speed data collected from the dedicated short range communication (DSRC) systems were used in Daegu metropolitan area. The developed model in this study contributes to the enhancement of investment efficiency and the improvement of information accuracy in intelligent transport system (ITS).

Asset tracking system architecture using sensor network technology (센서 네트워크를 이용한 자산 모니터링 시스템 구조)

  • Kang, Jeong-Hoon;Lee, Min-Goo;Lee, Sang-Won;Ham, Kyung-Sun;Lee, Sang-Hak
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.426-428
    • /
    • 2004
  • Sensor network supports data delivery from physical world to cyber space Sensors get physical events then wireless network transfers sensor data to service server. We use sensor network technology to manage location information of asset. In ubiquitous computing environment, user localization is basic context for intelligent service. A lot of research group make effort to develop low cost localization technology. In this paper, we propose asset monitoring system using wireless sensor network. It is implemented using ad hoc network technology which can be adopted to smart home and this system can monitor the asset location and movement.

  • PDF

A Fine-grained Localization Scheme Using A Mobile Beacon Node for Wireless Sensor Networks

  • Liu, Kezhong;Xiong, Ji
    • Journal of Information Processing Systems
    • /
    • v.6 no.2
    • /
    • pp.147-162
    • /
    • 2010
  • In this paper, we present a fine-grained localization algorithm for wireless sensor networks using a mobile beacon node. The algorithm is based on distance measurement using RSSI. The beacon node is equipped with a GPS sender and RF (radio frequency) transmitter. Each stationary sensor node is equipped with a RF. The beacon node periodically broadcasts its location information, and stationary sensor nodes perceive their positions as beacon points. A sensor node's location is computed by measuring the distance to the beacon point using RSSI. Our proposed localization scheme is evaluated using OPNET 8.1 and compared with Ssu's and Yu's localization schemes. The results show that our localization scheme outperforms the other two schemes in terms of energy efficiency (overhead) and accuracy.

The Development and Performance Evaluation of Adaptive Monitoring sensor for the Marine IT System (해양 IT시스템용 적응형 모니터링 센서의 개발 및 성능 평가)

  • Cho, Jeong-Hwan;Roh, Hee-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.6
    • /
    • pp.90-95
    • /
    • 2015
  • This paper proposes the new adaptive gain control monitoring sensor for the marine IT system. The marine IT system sensors make it possible to conduct search missions, record climate changes, provide pollution control, study marine life, conduct survey missions, tactical surveillance, and predict natural disturbances in the ocean. In this paper, the adaptive gain control circuit which changes its parameters according to the ambient noise situation for obtaining the precise location information of marine IT system sensor is developed and analyzed. The performance characteristics for ensuring the precise location information of marine system sensor is presented and analyzed. The theoretical and experimental studies have been carried out. The presented results from the above investigation show considerably excellent performance for the monitoring of the marine system.

Implementation of Campus Car Location Management System Using Received Signal Strength of Wireless Sensor Node (무선 센서노드의 전파수신강도(RSS)를 이용한 캠퍼스 차량 위치관리 시스템 구현)

  • Choi, Jun-Young;Kim, Hyun-Joong;Yang, Hyun-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.473-476
    • /
    • 2008
  • USN(Ubiquotous Sensor Network) has been applied to various fields of industries such as logistics, environment management, traffic management, as well as IT industries including home network and telematics. Among the important techniques required to implement aforementioned applications, location management scheme is essential. In this paper, we proposed and implemented a new location measurement scheme based on RSSI of sensor node for campus car location management.

  • PDF

Fault- Tolerant Tasking and Guidance of an Airborne Location Sensor Network

  • Wu, N.Eva;Guo, Yan;Huang, Kun;Ruschmann, Matthew C.;Fowler, Mark L.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.351-363
    • /
    • 2008
  • This paper is concerned with tasking and guidance of networked airborne sensors to achieve fault-tolerant sensing. The sensors are coordinated to locate hostile transmitters by intercepting and processing their signals. Faults occur when some sensor-carrying vehicles engaged in target location missions are lost. Faults effectively change the network architecture and therefore degrade the network performance. The first objective of the paper is to optimally allocate a finite number of sensors to targets to maximize the network life and availability. To that end allocation policies are solved from relevant Markov decision problems. The sensors allocated to a target must continue to adjust their trajectories until the estimate of the target location reaches a prescribed accuracy. The second objective of the paper is to establish a criterion for vehicle guidance for which fault-tolerant sensing is achieved by incorporating the knowledge of vehicle loss probability, and by allowing network reconfiguration in the event of loss of vehicles. Superior sensing performance in terms of location accuracy is demonstrated under the established criterion.

A Study on method to improve the detection accuracy of the location at Multi-sensor environment (다중센서 환경에서 위치추정 정확도 향상 방안 연구)

  • Na, In-Seok;Kim, Yeong-Gil;Jung, Ji-Hoon;Jo, Je-Il;Kim, San-Hae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.337-340
    • /
    • 2011
  • In location finding system using spaced multi-sensor, Depending on the signal source's location and the location of the sensors Position estimation accuracy is determined. This phenomenon is called GDOP effect. and to minimize these effects, research is needed on how. In this paper, I will describe how to minimize GDOP effect, estimating GDOP using angle of arrivals of multi sensors, and removing sensor error factor.

  • PDF

Location Service and Data Dissemination Protocol for Mobile Sink Groups in Wireless Sensor Networks (무선 센서 네트워크에서 이동 싱크 그룹을 위한 위치 서비스와 데이터 전송 프로토콜)

  • Yoon, Min;Lee, Euisin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1431-1439
    • /
    • 2016
  • In this paper, we propose a new location service and location-based routing for data dissemination from a source to a mobile group sink in less energy consumption of the sensor node. Unlike the existing protocols, the proposed protocol uses a leader sink instead of a group area as the location information to represent a mobile sink group. The proposed protocol also uses grid leaders on virtual grid structure to support sink mobility in location service. By using a leader sink as a representative and grid leaders for mobility supporting, the proposed protocol can exploit an efficient hierarchical location service and data dissemination method without using flooding. Accordingly, the proposed protocol carries out upper layer location services and data dissemination between a leader sink and a source and lower layer location services and data dissemination between the leader sink and member sinks. Simulation results demonstrate that the proposed protocol achieves energy-efficiency.

Energy-efficient Data Dissemination Scheme via Sink Location Service in Wireless Sensor Networks (무선 센서망에서 위치정보 선제공 기법을 이용한 에너지 효율적인 데이타 전달방안)

  • Yu, Fu-Cai;Choi, Young-Hwan;Park, Soo-Chang;Lee, Eui-Sin;Tian, Ye;Park, Ho-Sung;Kim, Sang-Ha
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10d
    • /
    • pp.240-243
    • /
    • 2007
  • Geographic routing has been considered as an efficient simple, and scalable routing protocol for wireless sensor networks since it exploits pure location information instead of global topology information to route data packets. Geographic routing requires the sources nodes to be aware of the location of the sinks. In this paper, we propose a scheme named Sink Location Service for geographic routing in wireless Sensor Networks, in which the source nodes can get and update the location of sinks with low overhead. In this scheme, a source and a sink send data announcement and query messages along two paths respectively by geographic routing. The node located on the crossing point of the two paths informs the source about the location of the sink. Then the source can send data packet to the sink by geographic routing. How to guarantee that these two paths have at least one crossing point in any irregular profile of sensor network is the challenge of this paper.

  • PDF