• Title/Summary/Keyword: Location Error

Search Result 1,239, Processing Time 0.032 seconds

Optimized finite element model updating method for damage detection using limited sensor information

  • Cheng, L.;Xie, H.C.;Spencer, B.F. Jr.;Giles, R.K.
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.681-697
    • /
    • 2009
  • Limited, noisy data in vibration testing is a hindrance to the development of structural damage detection. This paper presents a method for optimizing sensor placement and performing damage detection using finite element model updating. Sensitivity analysis of the modal flexibility matrix determines the optimal sensor locations for collecting information on structural damage. The optimal sensor locations require the instrumentation of only a limited number of degrees of freedom. Using noisy modal data from only these limited sensor locations, a method based on model updating and changes in the flexibility matrix successfully determines the location and severity of the imposed damage in numerical simulations. In addition, a steel cantilever beam experiment performed in the laboratory that considered the effects of model error and noise tested the validity of the method. The results show that the proposed approach effectively and robustly detects structural damage using limited, optimal sensor information.

MCNP-polimi simulation for the compressed-sensing based reconstruction in a coded-aperture imaging CAI extended to partially-coded field-of-view

  • Jeong, Manhee;Kim, Geehyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.199-207
    • /
    • 2021
  • This paper deals with accurate image reconstruction of gamma camera using a coded-aperture mask based on pixel-type CsI(Tl) scintillator coupled with silicon photomultipliers (SiPMs) array. Coded-aperture imaging (CAI) system typically has a smaller effective viewing angle than Compton camera. Thus, if the position of the gamma source to be searched is out of the fully-coded field-of-view (FCFOV) region of the CAI system, artifacts can be generated when the image is reconstructed by using the conventional cross-correlation (CC) method. In this work, we propose an effective method for more accurate reconstruction in CAI considering the source distribution of partially-coded field-of-view (PCFOV) in the reconstruction in attempt to overcome this drawback. We employed an iterative algorithm based on compressed-sensing (CS) and compared the reconstruction quality with that of the CC algorithm. Both algorithms were implemented and performed a systematic Monte Carlo simulation to demonstrate the possiblilty of the proposed method. The reconstructed image qualities were quantitatively evaluated in sense of the root mean square error (RMSE) and the peak signal-to-noise ratio (PSNR). Our simulation results indicate that the proposed method provides more accurate location information of the simulated gamma source than the CC-based method.

Three-dimensional Map Construction of Indoor Environment Based on RGB-D SLAM Scheme

  • Huang, He;Weng, FuZhou;Hu, Bo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.45-53
    • /
    • 2019
  • RGB-D SLAM (Simultaneous Localization and Mapping) refers to the technology of using deep camera as a visual sensor for SLAM. In view of the disadvantages of high cost and indefinite scale in the construction of maps for laser sensors and traditional single and binocular cameras, a method for creating three-dimensional map of indoor environment with deep environment data combined with RGB-D SLAM scheme is studied. The method uses a mobile robot system equipped with a consumer-grade RGB-D sensor (Kinect) to acquire depth data, and then creates indoor three-dimensional point cloud maps in real time through key technologies such as positioning point generation, closed-loop detection, and map construction. The actual field experiment results show that the average error of the point cloud map created by the algorithm is 0.0045m, which ensures the stability of the construction using deep data and can accurately create real-time three-dimensional maps of indoor unknown environment.

A Practical Measurement Method of the Occupied Bandwidth for 8-VSB DTV Signal Using Modified ACPR

  • Kim, Young Soo;Lee, Bong Gyou;Song, Kyeongmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3550-3565
    • /
    • 2019
  • This paper proposes a new measurement method for the effective measurement of the 99% occupied bandwidth (OBW) at monitoring stations. Although the OBW measurement of radio signal is recommended by the International Telecommunication Union Radio (ITU-R) with several methods, there still does not exist a clear measurement recommendation or standard for terrestrial DTV signal on-air environment. Modified adjacent channel power ratio (MACPR), which can be applied to 8-VSB (Vestigial Side Band) DTV (Digital Television) signal, is herein defined to verify the results of measurements obtained using the proposed measurement method. MACPR is a proper measuring parameter for determining the measuring area of a monitoring station. From measurement results obtained in real field environment, it has been found that the OBW of 8-VSB DTV signal can be effectively measured in areas where the MACPR value is over 35 dB and when the measurements are repeated more than 600 times in the same reception site. It also has been verified that measured results are within an error range of +/-0.1% compared to results directly obtained at a transmission station. It is expected that the proposed method is able to be employed in order to determine the proper location of monitoring station and provide a reliable OBW measurement procedure for 8-VSB DTV signal on-air environment.

Localization Algorithm for Lunar Rover using IMU Sensor and Vision System (IMU 센서와 비전 시스템을 활용한 달 탐사 로버의 위치추정 알고리즘)

  • Kang, Hosun;An, Jongwoo;Lim, Hyunsoo;Hwang, Seulwoo;Cheon, Yuyeong;Kim, Eunhan;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.1
    • /
    • pp.65-73
    • /
    • 2019
  • In this paper, we propose an algorithm that estimates the location of lunar rover using IMU and vision system instead of the dead-reckoning method using IMU and encoder, which is difficult to estimate the exact distance due to the accumulated error and slip. First, in the lunar environment, magnetic fields are not uniform, unlike the Earth, so only acceleration and gyro sensor data were used for the localization. These data were applied to extended kalman filter to estimate Roll, Pitch, Yaw Euler angles of the exploration rover. Also, the lunar module has special color which can not be seen in the lunar environment. Therefore, the lunar module were correctly recognized by applying the HSV color filter to the stereo image taken by lunar rover. Then, the distance between the exploration rover and the lunar module was estimated through SIFT feature point matching algorithm and geometry. Finally, the estimated Euler angles and distances were used to estimate the current position of the rover from the lunar module. The performance of the proposed algorithm was been compared to the conventional algorithm to show the superiority of the proposed algorithm.

Triangulation of Voronoi Faces of Sphere Voronoi Diagram using Delaunay Refinement Algorithm (딜러니 개선 알고리듬을 이용한 삼차원 구의 보로노이 곡면 삼각화)

  • Kim, Donguk
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.123-130
    • /
    • 2018
  • Triangulation is one of the fundamental problems in computational geometry and computer graphics community, and it has huge application areas such as 3D printing, computer-aided engineering, surface reconstruction, surface visualization, and so on. The Delaunay refinement algorithm is a well-known method to generate quality triangular meshes when point cloud and/or constrained edges are given in two- or three-dimensional space. In this paper, we propose a simple but efficient algorithm to triangulate Voronoi surfaces of Voronoi diagram of spheres in 3-dimensional Euclidean space. The proposed algorithm is based on the Ruppert's Delaunay refinement algorithm, and we modified the algorithm to be applied to the triangulation of Voronoi surfaces in two ways. First, a new method to deciding the location of a newly added vertex on the surface in 3-dimensional space is proposed. Second, a new efficient but effective way of estimating approximation error between Voronoi surface and triangulation. Because the proposed algorithm generates a triangular mesh for Voronoi surfaces with guaranteed quality, users can control the level of quality of the resulting triangulation that their application problems require. We have implemented and tested the proposed algorithm for random non-intersecting spheres, and the experimental result shows the proposed algorithm produces quality triangulations on Voronoi surfaces satisfying the quality criterion.

Detection and location of bolt group looseness using ultrasonic guided wave

  • Zhang, Yue;Li, Dongsheng;Zheng, Xutao
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.293-301
    • /
    • 2019
  • Bolted joints are commonly used in civil infrastructure and mechanical assembly structures. Monitoring and identifying the connection status of bolts is the frontier problem of structural research. The existing research is mainly on the looseness of a single bolt. This article presents a study of assessing the loosening/tightening health state and identifying the loose bolt by using ultrasonic guided wave in a bolt group joint. A bolt-tightening index was proposed for evaluating the looseness of a bolt connection based on correlation coefficient. The tightening/loosening state of the bolt was simulated by changing the bolt torque. More than 180 different measurement tests for total of six bolts were conducted. The results showed that with the bolt torque increases, value of the proposed bolt-tightening index increases. The proposed bolt-tightening index trend was very well reproduced by an analytical expression using a function of the torque applied with an overall percentage error lower than 5%. The developed damage index based on the proposed bolt-tightening index can also be applied to locate the loosest bolt in a bolt group joint. To verify the effectiveness of the proposed method, a bolt group joint experiment with different positions of bolt looseness was performed. Experimental results show that the proposed approach is effective to detect and locate bolt looseness and has a good prospect of finding applications in real-time structural monitoring.

Evolutionary-base finite element model updating and damage detection using modal testing results

  • Vahidi, Mehdi;Vahdani, Shahram;Rahimian, Mohammad;Jamshidi, Nima;Kanee, Alireza Taghavee
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.339-350
    • /
    • 2019
  • This research focuses on finite element model updating and damage assessment of structures at element level based on global nondestructive test results. For this purpose, an optimization system is generated to minimize the structural dynamic parameters discrepancies between numerical and experimental models. Objective functions are selected based on the square of Euclidean norm error of vibration frequencies and modal assurance criterion of mode shapes. In order to update the finite element model and detect local damages within the structural members, modern optimization techniques is implemented according to the evolutionary algorithms to meet the global optimized solution. Using a simulated numerical example, application of genetic algorithm (GA), particle swarm (PSO) and artificial bee colony (ABC) algorithms are investigated in FE model updating and damage detection problems to consider their accuracy and convergence characteristics. Then, a hybrid multi stage optimization method is presented merging advantages of PSO and ABC methods in finding damage location and extent. The efficiency of the methods have been examined using two simulated numerical examples, a laboratory dynamic test and a high-rise building field ambient vibration test results. The implemented evolutionary updating methods show successful results in accuracy and speed considering the incomplete and noisy experimental measured data.

Precision Analysis of NARX-based Vehicle Positioning Algorithm in GNSS Disconnected Area

  • Lee, Yong;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.289-295
    • /
    • 2021
  • Recently, owing to the development of autonomous vehicles, research on precisely determining the position of a moving object has been actively conducted. Previous research mainly used the fusion of GNSS/IMU (Global Positioning System / Inertial Navigation System) and sensors attached to the vehicle through a Kalman filter. However, in recent years, new technologies have been used to determine the location of a moving object owing to the improvement in computing power and the advent of deep learning. Various techniques using RNN (Recurrent Neural Network), LSTM (Long Short-Term Memory), and NARX (Nonlinear Auto-Regressive eXogenous model) exist for such learning-based positioning methods. The purpose of this study is to compare the precision of existing filter-based sensor fusion technology and the NARX-based method in case of GNSS signal blockages using simulation data. When the filter-based sensor integration technology was used, an average horizontal position error of 112.8 m occurred during 60 seconds of GNSS signal outages. The same experiment was performed 100 times using the NARX. Among them, an improvement in precision was confirmed in approximately 20% of the experimental results. The horizontal position accuracy was 22.65 m, which was confirmed to be better than that of the filter-based fusion technique.

Impact parameter prediction of a simulated metallic loose part using convolutional neural network

  • Moon, Seongin;Han, Seongjin;Kang, To;Han, Soonwoo;Kim, Kyungmo;Yu, Yongkyun;Eom, Joseph
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1199-1209
    • /
    • 2021
  • The detection of unexpected loose parts in the primary coolant system in a nuclear power plant remains an extremely important issue. It is essential to develop a methodology for the localization and mass estimation of loose parts owing to the high prediction error of conventional methods. An effective approach is presented for the localization and mass estimation of a loose part using machine-learning and deep-learning algorithms. First, a methodology was developed to estimate both the impact location and the mass of a loose part at the same times in a real structure in which geometric changes exist. Second, an impact database was constructed through a series of impact finite-element analyses (FEAs). Then, impact parameter prediction modes were generated for localization and mass estimation of a simulated metallic loose part using machine-learning algorithms (artificial neural network, Gaussian process, and support vector machine) and a deep-learning algorithm (convolutional neural network). The usefulness of the methodology was validated through blind tests, and the noise effect of the training data was also investigated. The high performance obtained in this study shows that the proposed methodology using an FEA-based database and deep learning is useful for localization and mass estimation of loose parts on site.