• Title/Summary/Keyword: Local wetting

Search Result 22, Processing Time 0.032 seconds

Applications of Micro-Droplet Cell to Study of Localized Corrosion Resistance of Stainless Steels (스테인리스강의 국부부식 저항성 연구에 미세방울셀의 응용)

  • Kim Sung-Yu;Kim Hee-San
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.70-76
    • /
    • 2006
  • Micro-droplet cell with free droplet as a micro-electrochemical technique has been limited to apply to electrochemical systems with high wetting properties such as an acidic solution and low grade stainless steels(Type 316L). By loading negative pressure to a droplet, control of droplet size, and use of hydrophobic gasket, the cell is modified to be allowed to use for electrochemical systems with high wetting properties. For giving the reliability of new cell, studies on local corrosion were conducted for three different systems-an acidic chloride solution and high chromium ferritic stainless steel, the other acidic chloride solution and type 316, and a neutral chloride solution and type 316. stainless steel. Firstly, the modified micro-droplet cell allows the anodic polarization curves in an acidic chloride solution to show the fact that the local corrosion of high chromium stainless steel near the $\alpha/\sigma$ interface is due to the Cr depleted zone. Secondly, the local anodic polarization test of type 316 L in the other acidic chloride solution can be successfully conducted in the cell. Furthermore, the local polarization curves help elucidating the corrosion of type 316 with $\delta-ferrite$ phase. Finally, the polarization curves of type 316 L in a neutral chloride solution indicates that the factor affecting the pitting corrosion resistance was inclusions rather than $\delta-ferrite$.

Enhanced Local Anesthetic Efficacy of Bioadhesive Ropivacaine Gels

  • Cho, Cheong-Weon;Choi, Jun-Shik;Shin, Sang-Chul
    • Biomolecules & Therapeutics
    • /
    • v.19 no.3
    • /
    • pp.357-363
    • /
    • 2011
  • In relieving local pains, ropivacaine has been widely used. In case of their application such as ointments and creams, it is difficult to expect their effects for a significant period of time, because they are easily removed by wetting, movement and contacting. Therefore, the new formulations that have suitable bioadhesion were needed to enhance local anesthetic effects. The effect of drug concentration and temperature on drug release was studied from the prepared 1.5% Carboxymethyl cellulose (CMC) (150MC) gels using synthetic cellulose membrane at $37{\pm}0.5^{\circ}C$. As the drug concentration and temperature increased, the drug release increased. A linear relationship was observed between the logarithm of the permeability coefficient and the reciprocal temperature. The activation energy of drug permeation was 3.16 kcal/mol for a 1.5% loading dose. To increase the skin permeation of ropivacaine from CMC gel, enhancers such as saturated and unsaturated fatty acids, pyrrolidones, propylene glycol derivatives, glycerides, and non-ionic surfactants were incorporated into the ropivacaine-CMC gels. Among the enhancers used, polyoxyethylene 2-oleyl ether showed the highest enhancing effects. For the efficacy study, the anesthetic action of the formulated ropivacaine gel containing an enhancer and vasoconstrictor was evaluated with the tail-flick analgesimeter. According to the rat tail-flick test, 1.5% drug gels containing polyoxyethylene 2-oleyl ether and tetrahydrozoline showed the best prolonged local analgesic effects. In conclusion, the enhanced local anesthetic gels containing penetration enhancer and vasoconstrictor could be developed using the bioadhesive polymer.

Derivation of the Effective Hydraulic Conductivity in Stratified Layered Soil Using Stochastic Approach (추계학적 방법을 이용한 성층화된 흙에서 유효 비포화투수계수의 유도)

  • Yun, Seong-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.699-708
    • /
    • 1997
  • The effective unsaturated hydraulic conductivity in stratified soils is evaluated using a three-dimensional stochastic approach. Because of the disparity of the correlation scales in a stratified soil, the general stochastic equations are simplified. This allows analytical evaluation of generic expressions for the effective hydraulic conductivities. Simple asymptotic expressions, valid at particular ranges(wetting front, drying condition, wetting condition) of the mean flow characteristics, are also derived. An example of applying the derived theoretical result to a imaginaryl clay soil is presented. It reveals found that the effective unsaturated hydraulic conductivity showed large-scale hysteresis. Such large-scale hysteresis was produced by the spatial variability of hydraulic soil properties rather than hysteresis of the local parameters. In addition the results show that the effective hydraulic conductivities were larger in the case of accommodating heterogeneity of soil preperties rather than neglecting heterogeneity of soil properties.

  • PDF

Carbonation depth in 57 years old concrete structures

  • Medeiros-Junior, Ronaldo A.;Lima, Maryangela G.;Yazigi, Ricardo;Medeiros, Marcelo H.F.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.953-966
    • /
    • 2015
  • Carbonation depth was verified in 40 points of two 57 years old concrete viaducts. Field testing (phenolphthalein spraying) was performed on the structures. Data obtained were statistically analyzed by the Kolmogrov-Smirnov's test, one-way analysis of variance (ANOVA's test), and Fisher's method. The results revealed significant differences between maximum carbonation depths of different elements of the same concrete structure. Significant differences were also found in the carbonation of different concrete structures inserted in the same macroclimate. Microclimatic factors such as temperature and local humidity, sunshine, wind, wetting and drying cycles, among others, may have been responsible by the behavior of carbonation in concrete.

A Study on the Development of Fire Extinguishing Agent and Extinguishing System for ESS Fire (ESS 화재전용 소화약제 및 소화시스템 개발에 관한 연구)

  • Lee, Yeon-Ho;Lee, Joo-Hyung;Kim, Soo-Jin;Chon, Sung-Ho;Choi, Byoung-Chul;Oh, Seung-Ju;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.147-155
    • /
    • 2020
  • This paper presents a study on the development of a fire extinguishing agent and extinguishing system for an energy storage system (ESS) fire. The fire extinguishing agent designed to extinguish an ESS fire is a highly permeable fire extinguisher that reduces the surface tension and viscosity while bringing about cooling action. This is the main extinguishing effect of this type of wetting agent, which displays the characteristics of fire extinguishing agents used for penetrating the battery cells inside the ESS module. For the fire extinguishing system, a local application system was designed to suppress fire on a rack-by-rack basis. A 360° rotating nozzle was inserted into the rear hall of the ESS module, and general nozzles were installed in the rack to maximize the fire extinguishing effect. The fire extinguishing agent was strongly discharged by virtue of the gas release pressure. Experiments on fire suppression performance with ESS module 1 unit and module 3 units showed that all visible flames were extinguished in 8 s and 9 s, respectively, by the fire extinguishing agent. In addition, based on confirming reignition for 600 s after the fire extinguishing agent was exhausted, it was confirmed that the ESS fire was completely extinguished without reignition in all fire suppression performance experiments.

A Study on Hot Ductility Behavior of Ni-based Superalloys (니켈기 초내열합금의 고온연성거동에 관한 연구)

  • Lee, Choung-Rae;Um, Sang-Ho;Kim, Sung-Wook;Choi, Cheol;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.59-68
    • /
    • 2004
  • Plasma transferred arc welding (PTAW) has been taken into consideration for repairing Ni-based superalloy components used gas turbine blades. Various cracks has been generally reported to be found in the base metal heat affected zone(HAZ) along grain boundary. Thus, hot cracking susceptibility of Ni-based superalloys was evaluated according to heat treatments. Hot ductility test was conducted on specimens with solution treated at 112$0^{\circ}C$ for 2 hours and aging treated at 845$^{\circ}C$ for 24hours after solution treatment. The results of the hot ductility test appeared that solution treated specimens were the highest ductility recovery rate among three conditions. The loss of ductility at high temperature in Ni-based superalloy was mainly controlled by the degree of pain boundary wetting due to constitutional liquation of MC carbide precipitates. Meanwhile, the highest ductility recovery rate in solution-treated alloys seems to be lack of M23C6, which can be dissolved during heating and then result in the local enrichment of Cr in the vicinity of the grain boundary.

Concrete beams submitted to various moisture environments

  • Multon, S.;Seignol, J.F.;Toutlemonde, F.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.71-83
    • /
    • 2006
  • This paper deals with the effects of various moisture environments on the structural behavior of concrete beams. The presented results were obtained within a large experimental program carried out at the Laboratoire Central des Ponts et Chauss$\acute{e}$es (LCPC), with Electricit$\acute{e}$ de France (EDF) as a partner. The aim of this paper is to point out and to quantify the strains resulting from unidirectional moisture conditions: a drying gradient applied during 14 months, followed by the re-wetting of the dried surface during 9 months. The effect of reinforcement on the shrinkage and on the deformation due to water absorption is pointed out. Moreover, a lot of tests on companion cylinders and prisms were carried out to determine the mechanical characteristics of the material and help checking analysis methods. The paper focuses on numerous measurements obtained during the 23 months on one plain concrete beam and one reinforced concrete beam: variation of water content, followed by precise weighing and gammadensitometry, relative humidity measurements, local and global deformations in the three directions and deflection of the beams. Thus, the effects of drying and water absorption on the behavior of concrete structures are documented and analyzed in comparison with existing representation of water diffusion.

Monitoring corrosion of reinforced concrete beams in a chloride containing environment under different loading levels

  • Wei, Aifang;Wang, Ying;Tan, Mike Y.J.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.253-267
    • /
    • 2015
  • Corrosion has significant adverse effects on the durability of reinforced concrete (RC) structures, especially those exposed to a marine environment and subjected to mechanical stress, such as bridges, jetties, piers and wharfs. Previous studies have been carried out to investigate the corrosion behaviour of steel rebar in various concrete structures, however, few studies have focused on the corrosion monitoring of RC structures that are subjected to both mechanical stress and environmental effects. This paper presents an exploratory study on the development of corrosion monitoring and detection techniques for RC structures under the combined effects of external loadings and corrosive media. Four RC beams were tested in 3% NaCl solutions under different levels of point loads. Corrosion processes occurring on steel bars under different loads and under alternative wetting - drying cycle conditions were monitored. Electrochemical and microscopic methods were utilised to measure corrosion potentials of steel bars; to monitor galvanic currents flowing between different steel bars in each beam; and to observe corrosion patterns, respectively. The results indicated that steel corrosion in RC beams was affected by local stress. The point load caused the increase of galvanic currents, corrosion rates and corrosion areas. Pitting corrosion was found to be the main form of corrosion on the surface of the steel bars for most of the beams, probably due to the local concentration of chloride ions. In addition, visual observation of the samples confirmed that the localities of corrosion were related to the locations of steel bars in beams. It was also demonstrated that electrochemical devices are useful for the detection of RC beam corrosion.

A Study on Optimization of Process Parameters in Zone Melting Recrystallization Using Tungsten Halogen Lamp (텅스텐 할로겐 램프를 사용하는 ZMR공정의 매개변수 최적화에 관한 연구)

  • Choi, Jin-Ho;Song, Ho-Jun;Lee, Ho-Jun;Kim, Choong-Ki
    • Korean Journal of Materials Research
    • /
    • v.2 no.3
    • /
    • pp.180-190
    • /
    • 1992
  • Some solutions to several major problems in ZMR such as agglomeration of polysilicon, slips and local substrate melting are described. Experiments are performed with varying polysilicon thickness and capping oxide thickness. The aggmeration can be eliminated when nitrogen is introduced at the capping oxide layer-to-polysilicon interface and polysilicon-to-buried oxide layer interface by annealing the SOI samples at $1100^{\circ}$ in $NH_3$ ambient for three hours. The slips and local substrate melting are removed when the back surface of silicon substrate is sandblasted to produce the back surface roughness of about $20{\mu}m$. The subboundary spacing increases with increasing polysilicon thickness and the uniformity of recrystallized SOI film thickness improves with increasing capping oxide thickness, improving the quality of recrystallized SOI film. When the polysilicon thickness is about $1.0{\mu}m$ and the capping oxide thickness is $2.5{\mu}m$, the thickness variation of the recrystallized SOI film is about ${\pm}200{\AA}$ and the subboundary spacing is about $70-120{\mu}m$.

  • PDF

Prediction of Cohesive Sediment Transport and Flow Resistance Around Artificial Structures of the Beolgyo Stream Estuary

  • Cho, Young-Jun;Hwang, Sung-Su;Park, Il-Heum;Choi, Yo-Han;Lee, Sang-Ho;Lee, Yeon-Gyu;Kim, Jong-Gyu;Shin, Hyun-Chool
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.167-181
    • /
    • 2010
  • To predict changes in the marine environment of the Beolgyo Stream Estuary in Jeonnam Province, South Korea, where cohesive tidal flats cover a broad area and a large bridge is under construction, this study conducted numerical simulations involving tidal flow and cohesive sediment transport. A wetting and drying (WAD) technique for tidal flats from the Princeton Ocean Model (POM) was applied to a large-scale-grid hydrodynamic module capable of evaluating the flow resistance of structures. Derivation of the eddy viscosity coefficient for wakes created by structures was accomplished through the explicit use of shear velocity and Chezy's average velocity. Furthermore, various field observations, including of tide, tidal flow, suspended sediment concentrations, bottom sediments, and water depth, were performed to verify the model and obtain input data for it. In particular, geologic parameters related to the evaluation of settling velocity and critical shear stresses for erosion and deposition were observed, and numerical tests for the representation of suspended sediment concentrations were performed to determine proper values for the empirical coefficients in the sediment transport module. According to the simulation results, the velocity variation was particularly prominent around the piers in the tidal channel. Erosion occurred mainly along the tidal channels near the piers, where bridge structures reduced the flow cross section, creating strong flow. In contrast, in the rear area of the structure, where the flow was relatively weak due to the formation of eddies, deposition and moderated erosion were predicted. In estuaries and coastal waters, changes in the flow environment caused by artificial structures can produce changes in the sedimentary environment, which in turn can affect the local marine ecosystem. The numerical model proposed in this study will enable systematic prediction of changes to flow and sedimentary environments caused by the construction of artificial structures.