• 제목/요약/키워드: Local watershed

검색결과 149건 처리시간 0.021초

워터쉐드 알고리즘을 이용한 지능형 비디오 영상 분할 시스템 (An Intelligent Video Image Segmentation System using Watershed Algorithm)

  • 양황규
    • 한국전자통신학회논문지
    • /
    • 제5권3호
    • /
    • pp.309-314
    • /
    • 2010
  • 본 논문에서는 인터넷상에서의 지능형 감시 카메라 시스템(Intelligent Security Camera: ISC)을 제안한다. ISC 방법은 워터쉐드 알고리즘에 기반하여 카메라에 입력된 영상을 분할하는 단계와 skin-color model을 사용하여 얼굴의 후보지역을 탐지하는 단계, 그리고 마지막으로 SVM(Support Vector Machine)을 사용하여 얼굴 후보영역에서 얼굴을 검증하는 단계로 구성되어 있다. Skin-color Model을 이용하여 찾아진 얼굴후보 영역으로부터 웨이블렛 변환계수들을 추출한다. 웨이블렛 변환계수들을 SVM의 입력으로 하여 실제 얼굴영역을 검증한다. SVM의 입력으로 실험결과에서 제안된 방법이 감시시스템, 화상회의 시스템과 같은 얼굴을 인식 추적하는 시스템에 적용될 수 있음을 보인다.

용담댐 저수지 수질관리시스템 적용성 평가 (Assessment of Water Quality Management System Application on Yongdam Reservoir)

  • 이요상;고덕구;이혜숙;정선아
    • 환경영향평가
    • /
    • 제17권4호
    • /
    • pp.235-242
    • /
    • 2008
  • To develop a watershed management plan for protection of the lake water quality, the linkages among land use activities, stream water quality, and lake water quality must be understood. This study conducted to develop a Decision Support System(DSS) for the reservoir water quality managers and a comprehensive watershed management plan. This DSS has three main components; database, interactive decision model, and data delivery interface system. Graphic User Interface(GUI) was developed as the interface medium to deliver the data and modeling results to the end users. Water quality management scenarios in Yongdam reservoir consist of two parts. One is the watershed management, and the other is water quality management in the reservoir. The watershed management scenarios that were evaluated include as follows : a removal of point sources, control of waste water treatment plant, reductions in nonpoint sources, and the management of developed land. Water quality management scenarios in the reservoir include to install a curtain wall and to operate an algae removal system. The results from the scenario analysis indicate that the strategy of the reservoir water quality management can promise the best effectiveness to conserve the quality of reservoir water. It is expected that many local agencies can use this DSS to analyze the impact of landuse changes and activities on the reservoir watershed and can benefit from making watershed management decisions.

적응적 Seed를 기초로한 분수계 분할을 이용한 차도영역 검출 (Robust Road Detection using Adaptive Seed based Watershed Segmentation)

  • 박한동;오정수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.687-690
    • /
    • 2015
  • 전방 추돌 경보 시스템(FCWS) 및 차선 이탈 경보 시스템(LDWS)에서 차선 및 객체 검출을 위한 관심영역은 차도영역으로 설정되어야 한다. 분수계 분할(watershed segmentation)방법은 차도영역을 분리하기에 효과적인 알고리즘이다. 이 알고리즘은 초기 seed에 속해있는 watershed line과 국부 최소값에 따라서 분할 결과가 다르게 나타나는데 차도 seed에 그 이외의 영역이나 차량이 포함될 경우에 차도 이외의 부분이 차도영역으로 포함되어 분할된다. 이런 문제점을 보완하기 위해 도로 환경에 따라 차도 seed를 적응적으로 변경해야 한다. 그 방법으로 영상을 여러 개의 관심영역으로 분할하여 차선을 검출하고 자기차선을 잇는 직선을 초기 seed로 설정한다. 설정된 seed에 차량이 검출되면 seed 위치를 조정하고 조정된 위치에서 차선을 지나지 않는다면 차선을 지나도록 seed의 크기를 조정하여 최종적인 seed를 결정한다. 최종적으로 결정된 seed를 통해서 도로환경에 따라 적응적으로 차도영역을 검출을 가능하게 한다.

  • PDF

수질오염총량관리제의 성과평가: 개발/삭감계획의 이행실적 및 단위유역의 수질 현황 (Performance Appraisal of Total Maximum Daily Loads: Performance on Development/Reduction Plan and Water Quality Status of Unit Watershed)

  • 박재홍;박준대;류덕희;정동일
    • 한국물환경학회지
    • /
    • 제25권4호
    • /
    • pp.481-493
    • /
    • 2009
  • This study was conducted to performance appraisal of Total Maximum Daily Loads (TMDLs), especially in terms of performance on development & reduction plan and water quality status of unit watershed. Because load allocations for pollution sources were predicted redundantly by uncertainty of prediction, TMDLs master plan has been frequently changed to acquire load allocation for local development. Therefore, It need to be developed more resonable prediction techniques of water pollution sources to preventing the frequent change. It is suggested that the reduction amount have to be distributed properly during the planning period. In other words, it has not to be concentrated on the specific year (especially final year of the planning period). The reason why, if the reduction amount concentrate on the final year of the planning period, allotment loading amount could not be achieved in some cases (e.g., insufficiency of budget, extension of construction duration). If the development plan was developed including uncertain developments, it is necessary to be developed reduction plan considered with them. However, some of the plans in the reduction plan could not be accomplished in some case. Because, it is not considered financial abilities of local governments. Consequently, development plan must be accomplished to avoid uncertain developments, and to consider financial assistance to support the implementation of effective plan. Water quality has been improved in many unit watersheds due to the TMDLs, especially in geum river and yeongsang/seomjin river.

Grid Based Nonpoint Source Pollution Load Modelling

  • Niaraki, Abolghasem Sadeghi;Park, Jae-Min;Kim, Kye-Hyun;Lee, Chul-Yong
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2007년도 GIS 공동춘계학술대회 논문집
    • /
    • pp.246-251
    • /
    • 2007
  • The purpose of this study is to develop a grid based model for calculating the critical nonpoint source (NPS) pollution load (BOD, TN, TP) in Nak-dong area in South Korea. In the last two decades, NPS pollution has become a topic for research that resulted in the development of numerous modeling techniques. Watershed researchers need to be able to emphasis on the characterization of water quality, including NPS pollution loads estimates. Geographic Information System (GIS) has been designed for the assessment of NPS pollution in a watershed. It uses different data such as DEM, precipitation, stream network, discharge, and land use data sets and utilizes a grid representation of a watershed for the approximation of average annual pollution loads and concentrations. The difficulty in traditional NPS modeling is the problem of identifying sources and quantifying the loads. This research is intended to investigate the correlation of NPS pollution concentrations with land uses in a watershed by calculating Expected Mean Concentrations (EMC). This work was accomplished using a grid based modelling technique that encompasses three stages. The first step includes estimating runoff grid by means of the precipitation grid and runoff coefficient. The second step is deriving the gird based model for calculating NPS pollution loads. The last step is validating the gird based model with traditional pollution loads calculation by applying statistical t-test method. The results on real data, illustrate the merits of the grid based modelling approach. Therefore, this model investigates a method of estimating and simulating point loads along with the spatially distributed NPS pollution loads. The pollutant concentration from local runoff is supposed to be directly related to land use in the region and is not considered to vary from event to event or within areas of similar land uses. By consideration of this point, it is anticipated that a single mean estimated pollutant concentration is assigned to all land uses rather than taking into account unique concentrations for different soil types, crops, and so on.

  • PDF

상수원 보호를 위한 유역기반 토지관리 우선순위 모델 적용 (Application of a Watershed-Based Land Prioritization Model for the Protection of Drinking Water Reservoir)

  • 이지현;최지용;박석순
    • 한국물환경학회지
    • /
    • 제20권5호
    • /
    • pp.397-408
    • /
    • 2004
  • Due to the growing impact of non-point source pollution and limitation of water treatment technology, a new policy of water quality management, called a source protection, is now becoming more important in drinking water supply. The source protection means that the public agency purchases the pollution sensitive area, such as riparian zone, and prohibit locations of point and non-point sources. Many studies have reported that this new policy is more economical in drinking water supply than the conventional one. However, it is very difficult to determine location and size of the pollution sensitive zone in the watershed. In this paper, we presented the scientific criteria for the priority of the pollution sensitive zone, along with a case study of the upstream watershed of the Paldang Reservoir, Han River. This study includes applications of the analytical hierarchy process(AHP) and a watershed-based land prioritization(WLP) model. After major criteria affecting water quality were selected, the AHP and geographic analysis were performed. The WLP model allowed us to include both quantity and quality criteria, using AHP as the multi-criteria method in making decision and reflecting local characteristics and various needs. By adding a travel-time function, which represents the prototype effectively, the results secured adaptability and scientific objectivity as well. As such, the WLP model appeared to provide reasonable criteria in determining the prioritization of land acquisition. If the tested data are used with a validated travel-time and AHP method is applied after further discussion among experts in such field, highly reliable results can be obtained.

The influence of anthropogenic disturbances and watershed morphological characteristics on Hg dynamics in Northern Quebec large boreal lakes

  • Moingt, M.;Lucotte, M.;Paquet, S.;Beaulne, J.S.
    • Advances in environmental research
    • /
    • 제2권2호
    • /
    • pp.81-98
    • /
    • 2013
  • Mercury (Hg) dynamics in the boreal environment have been a subject of concern in recent decades, due to the exposure of local populations to the contaminant. Land use, because of its impact on mercury inputs, has been highlighted as a key player in the sources and eventual concentrations of the heavy metal. In order to evaluate the impact of watershed disturbances on Hg dynamics in frequently fished, large boreal lakes, we studied sediment cores retrieved at the focal point of eight large lakes of Qu$\acute{e}$bec (Canada), six with watersheds affected by land uses such as logging and/or mining, and two with pristine watersheds, considered as reference lakes. Using a Geographical Information System (GIS), we correlated the recent evolution of land uses (e.g., logging and mining activities) and morphological characteristics of the watershed (e.g., mean slope of the drainage area, vegetation cover) to total Hg concentrations (THg) in sedimentary records. In each core, THg gradually increased over recent years with maximum values between 70 and 370 ng/g, the lowest mercury concentrations corresponding to the pristine lake cores. The Hg Anthropogenic Sedimentary Enrichment Factor (ASEF) values range from 2 to 15. Surprisingly, we noticed that the presence of intense land uses in the watershed does not necessarily correspond to noticeable increases of THg in lake sediments, beyond the normal increment that can be attributed to Hg atmospheric deposition since the beginning of the industrial era. Rather, the terrestrial Hg inputs of boreal lakes appear to be influenced by watershed characteristics such as mean slopes and vegetation cover.

SWMM의 유출량 보정을 위한 매개변수 최적화 (Parameter Optimization for Runoff Calibration of SWMM)

  • 조재현;이종호
    • 환경영향평가
    • /
    • 제15권6호
    • /
    • pp.435-441
    • /
    • 2006
  • For the calibration of rainfall-runoff model, automatic calibration methods are used instead of manual calibration to obtain the reliable modeling results. When mathematical programming techniques such as linear programming and nonlinear programming are applied, there is a possibility to arrive at the local optimum. To solve this problem, genetic algorithm is introduced in this study. It is very simple and easy to understand but also applicable to any complicated mathematical problem, and it can find out the global optimum solution effectively. The objective of this study is to develope a parameter optimization program that integrate a genetic algorithm and a rainfall-runoff model. The program can calibrate the various parameters related to the runoff process automatically. As a rainfall-runoff model, SWMM is applied. The automatic calibration program developed in this study is applied to the Jangcheon watershed flowing into the Youngrang Lake that is in the eutrophic state. Runoff surveys were carried out for two storm events on the Jangcheon watershed. The peak flow and runoff volume estimated by the calibrated model with the survey data shows good agreement with the observed values.

Forest Fire Risk Zonation in Madi Khola Watershed, Nepal

  • Jeetendra Gautam
    • Journal of Forest and Environmental Science
    • /
    • 제40권1호
    • /
    • pp.24-34
    • /
    • 2024
  • Fire, being primarily a natural phenomenon, is impossible to control, although it is feasible to map the forest fire risk zone, minimizing the frequency of fires. The spread of a fire starting in any stand in a forest can be predicted, given the burning conditions. The natural cover of the land and the safety of the population may be threatened by the spread of forest fires; thus, the prevention of fire damage requires early discovery. Satellite data and geographic information system (GIS) can be used effectively to combine different forest-fire-causing factors for mapping the forest fire risk zone. This study mainly focuses on mapping forest fire risk in the Madikhola watershed. The primary causes of forest fires appear to be human negligence, uncontrolled fire in nearby forests and agricultural regions, and fire for pastoral purposes which were used to evaluate and assign risk values to the mapping process. The majority of fires, according to MODIS events, occurred from December to April, with March recording the highest occurrences. The Risk Zonation Map, which was prepared using LULC, Forest Type, Slope, Aspect, Elevation, Road Proximity, and Proximity to Water Bodies, showed that a High Fire Risk Zone comprised 29% of the Total Watershed Area, followed by a Moderate Risk Zone, covering 37% of the total area. The derived map products are helpful to local forest managers to minimize fire risks within the forests and take proper responses when fires break out. This study further recommends including the fuel factor and other fire-contributing factors to derive a higher resolution of the fire risk map.

논의 수문특성을 고려한 소유역의 유출곡선 합성 (Runoff Hydrograph Synthesis from Small Watersheds Considering Hydrological Characteristics of Irrigated Rice Paddies)

  • 김철겸;박승우;임상준
    • 한국농공학회지
    • /
    • 제42권6호
    • /
    • pp.56-62
    • /
    • 2000
  • The NRCS curve number (CN) method has been widely adopted in practice to synthesize runoff hydrographs from small watersheds with complex land use. It may not be valid to apply this model for irrigated paddies, since hydrological characteristics of irrigated rice paddies are not sufficiently considered in CN method. This paper attempts to extend the capability of the well-known SCS TR-20 model to local conditions by formulating a submodel for the runoff-processes in paddies. The modified model was tested with field data from the Baran watershed. The results were in good agreement with field data. It was also applicable to simulate runoff changes resulting from land use changes within the watershed.

  • PDF