• Title/Summary/Keyword: Local temperature distribution

Search Result 327, Processing Time 0.032 seconds

Local heat transfer measurement inside microchannel (마이크로채널에서의 국소 열전달 측정)

  • Cho, Dae-Gwan;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1902-1907
    • /
    • 2008
  • The current work presents a design and fabrication technique for a microchannel system to measure the local temperature distribution inside microchannel. This micro channel system fabricated by MEMS technique is integrated with a heater and an array of temperature sensors so that detailed heat transfer phenomena inside micro-scale channel can be studied. Materials widely used in semiconductor process were selected to fabricate a heater and temperature sensors on a silicon wafer. On these heater and sensors a channel wall was fabricated with SU-8. The friction constant and the local Nusselt number distribution measured for the deionized water flow in the microchannel is presented.

  • PDF

Distribution Analysis of the Local Critical Temperature and Current Density in YBCO Coated Conductors using Low-temperature Scanning Laser and Hall Probe Microscopy (저온 주사 레이저 및 홀소자 현미경을 이용한 YBCO 초전도 선재의 국소적 임계 온도 및 전류 밀도 분포 분석)

  • Park, S.K.;Cho, B.R.;Park, H.Y.;Ri, H.C.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.28-33
    • /
    • 2011
  • Distribution of the local critical temperature and current density in YBCO coated conductors were analyzed using Low-temperature Scanning Laser and Hall Probe Microscopy (LTSLHPM). We prepared YBCO coated conductors of various bridge types to study the spatial distribution of the critical temperature and the current density in single and multi bridges. LTSLHPM system was modified for detailed linescan or two-dimensional scan both scanning laser and scanning Hall probe method simultaneously. We analyzed the local critical temperature of single and multi bridges from series of several linescans of scanning laser microscopy. We also investigated local current density and hysteresis curve of single bridge from experimental results of scanning Hall probe microscopy.

The Relationship between Local Distribution and Abundance of Butterflies and Weather Factors

  • Choi, Sei-Woong
    • The Korean Journal of Ecology
    • /
    • v.26 no.4
    • /
    • pp.199-202
    • /
    • 2003
  • According to the energy hypothesis, the energy input per unit area primarily determines species richness in regions of roughly equal area. Some energy-related ecological research included identification of major climatic variables to determine regional species richness. In this study, the local butterfly species richness was examined to find out whether weather variables affected the local distribution or abundance of butterfly populations. Butterfly monitoring data from May 2001 to April 2002 taken at Mt. Yudal, Mokpo, in the southwestern part of Korea, and six weather variables (monthly mean values of temperature, precipitation, evaporation, wind speed, air pressure, and sunlight) were analyzed. Multiple regression analysis showed that only temperature explained 80% and 70% of the variability of log-transformed number of species and individuals, respectively, indicating that temperature played an important role in local species richness. Furthermore, global warming could affect the abundance and distribution of butterflies regionally as well as locally.

Analysis of the local superconducting properties in YBCO coated conductors with striations

  • Kim, Muyong;Park, Sangkook;Park, Heeyeon;Ri, Hyeong-Cheol
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.25-30
    • /
    • 2015
  • In order to realize economical applications, it is important to reduce the ac loss of 2G high-temperature superconductor coated conductors. It seems to be reasonable that a multi-filamentary wire can decrease the magnetization loss. In this study, we prepared two samples of YBCO coated conductors with striations. We measured local superconducting properties of both samples by using Low Temperature Scanning Laser and Hall Probe Microscopy (LTSLHPM). The distribution of the local critical temperature of samples was analyzed from experimental results of Low Temperature Scanning Laser Microscopy (LTSLM) near the superconducting transition temperature. According to LTSLM results, spatial distributions of the local critical temperature of both samples are homogeneous. The local current density and the local magnetization in samples were explored from measuring stray fields by using Scanning Hall Probe Microscopy (SHPM). From SHPM results, the remanent field pattern of the one bridge sample in an external magnetic field confirms the Bean's critical state model and the three bridge sample has similar remanent field pattern of the one bridge sample. The local magnetization curve in the three bridge sample was measured from external fields from -500 Oe to 500 Oe. We visualized that the distribution of local hysteresis loss are related in the distribution of the remanent field of the three bridge sample. Although the field dependence of the critical current density must be taken into account, the relation of the local hysteresis loss and the remanent field from Bean's model was useful.

Distribution Analysis of Local Critical Temperature and Current Density in YBCO Coated Conductors using Low-temperature Scanning Laser Microscopy (저온 주사 레이저 현미경(LTSLM)을 이용한 YBCO 초전도 선재의 국소적 임계 온도 및 전류 밀도 분포 분석)

  • Park, S.K.;Cho, B.R.;Ri, H.C.
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • Distribution of local critical temperature and current density in $YBa_2Cu_3O_{7-\delta}$ (YBCO) coated conductors was analyzed using a Low-temperature Scanning Laser Microscopy (LTSLM). We prepared YBCO coated conductors of various bridge types to study the spatial distribution of critical temperature and current density in single and multi bridges. An LTSLM system was modified for a detailed two-dimensional scan without shifting of the sample. We observed a spatial distribution of the critical temperature from the bolometric response, which arises from a focused laser beam at the sample near the superconducting transition. Also we studied the relation between the critical temperature and the current density.

Investigation of Local Convective Heat Transfer around a Circular Tube in Cross Flow of Air (원관 주위로 공기의 국소 대류 열전달에 대한 연구)

  • 이억수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.546-555
    • /
    • 2004
  • With circular tube heated directly or indirectly placed in a cross flow, heat flows circumferentially by conduction due to the asymmetric nature of the fluid flow around the perimeter of the circular tube. The circumferential heat flow affects the wall temperature distribution to such an extent that in some cases. The effects of circumferential wall heat conduction on local convective heat transfer is investigated. The wall heat conduction parameter which can be deduced from the governing energy equation should be used to express the effect of circumferential heat conduction. Two-dimensional temperature distribution is presented through the numerical analysis. The comparison of one-dimensional and two-dimensional solutions is demonstrated on graph of local Nusselt numbers.

Measurements of Heat Transfer Distribution in Spray Cooling of Hot Steel Plate . (분무냉각에 의한 강판 열처리과정에 있어서 열전달분포의 측정)

  • 김영찬;유갑종;서태원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.886-893
    • /
    • 2000
  • A good understanding of the heat transfer distribution is very important to suppress the deformation of steel products. In this study, the local heat transfer coefficients are experimentally investigated to understand the heat transfer distribution of thick steel plates with even flat spray nozzle. The steel slabs are cooled down from the initial temperature of about $1000^{\circ}C$ , and the local heat transfer coefficients and surface temperatures are calculated from the measured temperature-time history. The results show that the local heat transfer coefficients of spray cooling are dominated by the local droplet flow rate, and in proportion to becoming more distant from the center of heat transfer surface, the local heat transfer coefficients decrease with the decrease of the local droplet flow rate.

  • PDF

Study of the local heat transfer characteristic on the louver fin by using the expansion model (확대 모델을 이용한 루버 휜의 국부 열전달 특성변화에 관한 연구)

  • Kim, Jung-Kuk;Koyama, Shigeru;Kuwahara, Ken;Park, Byung-Duck;Kim, Dong-Hwi;Sa, Yong-Cheol
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.227-232
    • /
    • 2008
  • The present study was investigated the local heat transfer characteristics and temperature distribution on the louver fin by using the expansion model. Heat transfer rate, frost mass and temperature distribution of the louver fin under frosting condition were experimentally investigated. Local heat transfer rate and heat flux on the louver were analyzed by the conduction heat transfer between top and lower part of the louver. The experimental key parameter was brine inlet temperature(-5, -10, $-15^{\circ}C$). The heat transfer performance and frost mass at brine temperature of $-15^{\circ}C$ were increased by maximum 3 time than the brine temperature of $-5^{\circ}C$. At all experimental case, local heat transfer rate and heat flux of the louver were almost symmetry at the louver number of 6. Especially, local heat transfer rate and heat flux were maximum increased on the louver number of 4 and 8.

  • PDF

Effects of Droplet Temperature on Heat Transfer During Collision on a Heated Wall Above the Leidenfrost Temperature (Leidenfrost 온도 이상의 가열 벽면과 충돌 시 열전달에 대한 액적 온도의 영향)

  • Park, Junseok;Kim, Hyungdae
    • Journal of ILASS-Korea
    • /
    • v.21 no.2
    • /
    • pp.78-87
    • /
    • 2016
  • This study experimentally investigated the effects of droplet temperature on the heat transfer characteristics during collision of a single droplet on a heated wall above the Leidenfrost temperature. Experiments were performed by varying temperature from 40 to $100^{\circ}C$ while the collision velocity and wall temperature were maintained constant at 0.7 m/s at $500^{\circ}C$, respectively. Evolution of temperature distribution at the droplet-wall interface as well as collision dynamics of the droplet were simultaneously recorded using synchronized high-speed video and infrared cameras. The local heat flux distribution at the collision surface was deduced using the measured temperature distribution data. Various physical parameters, including residence time, local heat flux distribution, heat transfer rate, heat transfer effectiveness and vapor film thickness, were measured from the visualization data. The results showed that increase in droplet temperature reduces the residence time and increases the vapor film thickness. This ultimately results in reduction in the total heat transfer by conduction through the vapor film during droplet-wall collision.

Modeling of Thermal Conductivity of Carbon Spun Yarn (탄소 방적사의 열전도도 모델링)

  • Cho Young Jun;Sul In Hwan;Kang Tae Jin;Park Jong Kyoo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.186-189
    • /
    • 2004
  • A thermal model of carbon spun yam is presented. The unit cell of spun carbon yam is divided into a number of volume elements and the local material properties have been given to each element. By using Finite Difference Method (FDM), temperature distribution in the unit cell can be obtained. Effective thermal conductivity of the spun carbon yam unit cell is calculated using the temperature distribution and thermal conductivities of local elements.

  • PDF