• Title/Summary/Keyword: Local search algorithm

Search Result 445, Processing Time 0.028 seconds

A Minimum Expected Length Insertion Algorithm and Grouping Local Search for the Heterogeneous Probabilistic Traveling Salesman Problem (이종 확률적 외판원 문제를 위한 최소 평균거리 삽입 및 집단적 지역 탐색 알고리듬)

  • Kim, Seung-Mo;Choi, Ki-Seok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.114-122
    • /
    • 2010
  • The Probabilistic Traveling Salesman Problem (PTSP) is an important topic in the study of traveling salesman problem and stochastic routing problem. The goal of PTSP is to find a priori tour visiting all customers with a minimum expected length, which simply skips customers not requiring a visit in the tour. There are many existing researches for the homogeneous version of the problem, where all customers have an identical visiting probability. Otherwise, the researches for the heterogeneous version of the problem are insufficient and most of them have focused on search base algorithms. In this paper, we propose a simple construction algorithm to solve the heterogeneous PTSP. The Minimum Expected Length Insertion (MELI) algorithm is a construction algorithm and consists of processes to decide a sequence of visiting customers by inserting the one, with the minimum expected length between two customers already in the sequence. Compared with optimal solutions, the MELI algorithm generates better solutions when the average probability is low and the customers have different visiting probabilities. We also suggest a local search method which improves the initial solution generated by the MELI algorithm.

Global Optimization Using a Sequential Algorithm with Orthogonal Arrays in Discrete Space (이산공간에서 순차적 알고리듬(SOA)을 이용한 전역최적화)

  • Cho, Bum-Sang;Lee, Jeong-Wook;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.858-863
    • /
    • 2004
  • In the optimized design of an actual structure, the design variable should be selected among any certain values or corresponds to a discrete design variable that needs to handle the size of a pre-formatted part. Various algorithms have been developed for discrete design. As recently reported, the sequential algorithm with orthogonal arrays(SOA), which is a local minimum search algorithm in discrete space, has excellent local minimum search ability. It reduces the number of function evaluation using orthogonal arrays. However it only finds a local minimum and the final solution depends on the initial value. In this research, the genetic algorithm, which defines an initial population with the potential solution in a global space, is adopted in SOA. The new algorithm, sequential algorithm with orthogonal arrays and genetic algorithm(SOAGA), can find a global solution with the properties of genetic algorithm and the solution is found rapidly with the characteristics of SOA.

  • PDF

Hybrid Genetic Algorithms for Feature Selection and Classification Performance Comparisons (특징 선택을 위한 혼합형 유전 알고리즘과 분류 성능 비교)

  • 오일석;이진선;문병로
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.8
    • /
    • pp.1113-1120
    • /
    • 2004
  • This paper proposes a novel hybrid genetic algorithm for the feature selection. Local search operations are devised and embedded in hybrid GAs to fine-tune the search. The operations are parameterized in terms of the fine-tuning power, and their effectiveness and timing requirement are analyzed and compared. Experimentations performed with various standard datasets revealed that the proposed hybrid GA is superior to a simple GA and sequential search algorithms.

Improved Global Maximum Power Point Tracking for Photovoltaic System via Cuckoo Search under Partial Shaded Conditions

  • Shi, Ji-Ying;Xue, Fei;Qin, Zi-Jian;Zhang, Wen;Ling, Le-Tao;Yang, Ting
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.287-296
    • /
    • 2016
  • Conventional maximum power point tracking (MPPT) methods are ineffective under partially shaded conditions because multiple local maximum can be exhibited on power-voltage characteristic curve. This study proposes an improved cuckoo search (ICS) MPPT method after investigating the cuckoo search (CS) algorithm applied in solving multiple MPPT. The algorithm eliminates the random step in the original CS algorithm, and the conception of low-power, high-power, normal and marked zones are introduced. The adaptive step adjustment is also realized according to the different stages of the nest position. This algorithm adopts the large step in low-power and marked zones to reduce search time, and a small step in high-power zone is used to improve search accuracy. Finally, simulation and experiment results indicate that the promoted ICS algorithm can immediately and accurately track the global maximum under partially shaded conditions, and the array output efficiency can be improved.

On Modification and Application of the Artificial Bee Colony Algorithm

  • Ye, Zhanxiang;Zhu, Min;Wang, Jin
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.448-454
    • /
    • 2018
  • Artificial bee colony (ABC) algorithm has attracted significant interests recently for solving the multivariate optimization problem. However, it still faces insufficiency of slow convergence speed and poor local search ability. Therefore, in this paper, a modified ABC algorithm with bees' number reallocation and new search equation is proposed to tackle this drawback. In particular, to enhance solution accuracy, more bees in the population are assigned to execute local searches around food sources. Moreover, elite vectors are adopted to guide the bees, with which the algorithm could converge to the potential global optimal position rapidly. A series of classical benchmark functions for frequency-modulated sound waves are adopted to validate the performance of the modified ABC algorithm. Experimental results are provided to show the significant performance improvement of our proposed algorithm over the traditional version.

Fast Motion Estimation Using Local Statistics of Neighboring Motion Vectors (인접 블록 움직임 벡터의 지역적 통계 특성을 이용한 고속 움직임 추정 기법)

  • Kim, Ki-Beom;Jeong, Chan-Young;Hong, Min-Cheol
    • Journal of Broadcast Engineering
    • /
    • v.13 no.1
    • /
    • pp.128-136
    • /
    • 2008
  • In this paper, we propose a variable step search fast motion estimation algorithm using local statistics of neighboring motion vectors. Using the degree of correlation between neighboring motion vectors, motion search range is adaptively adjusted to reduce unnecessary search points. Based on the adjusted search range, motion vector is obtained by variable search step. Experimental results show that the proposed algorithm has the capability to dramatically reduce the search points and computing cost for motion estimation, comparing to fast full spiral search motion estimation and other fast motion estimation.

Local Solution of a Sequential Algorithm Using Orthogonal Arrays in a Discrete Design Space (이산설계공간에서 직교배열표를 이용한 순차적 알고리듬의 국부해)

  • Yi, Jeong-Wook;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1399-1407
    • /
    • 2004
  • Structural optimization has been carried out in continuous design space or in discrete design space. Generally, available designs are discrete in design practice. However, the methods for discrete variables are extremely expensive in computational cost. An iterative optimization algorithm is proposed for design in a discrete space, which is called a sequential algorithm using orthogonal arrays (SOA). We demonstrate verifying the fact that a local optimum solution can be obtained from the process with this algorithm. The local optimum solution is defined in a discrete design space. Then the search space, which is a set of candidate values of each design variables formed by the neighborhood of a current design point, is defined. It is verified that a local optimum solution can be found by sequentially moving the search space. The SOA algorithm has been applied to problems such as truss type structures. Then it is confirmed that a local solution can be obtained by using the SOA algorithm

Local Solution of Sequential Algorithm Using Orthogonal Arrays in Discrete Design Space (이산설계공간에서 직교배열표를 이용한 순차적 알고리듬의 국부해)

  • Yi, Jeong-Wook;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1005-1010
    • /
    • 2004
  • The structural optimization has been carried out in the continuous design space or in the discrete design space. Generally, available designs are discrete in design practice. But methods for discrete variables are extremely expensive in computational cost. In order to overcome this weakness, an iterative optimization algorithm was proposed for design in the discrete space, which is called as a sequential algorithm using orthogonal arrays (SOA). We focus to verify the fact that the local solution can be obtained throughout the optimization with this algorithm. The local solution is defined in discrete design space. Then the search space, which is the set of candidate values of each design variables formed by the neighborhood of current design point, is defined. It is verified that a local solution can be founded by moving sequentially the search space. The SOA algorithm has been applied to problems such as truss type structures. Then it is confirmed that a local solution can be obtained using the SOA algorithm

  • PDF

ALGORITHM FOR WEBER PROBLEM WITH A METRIC BASED ON THE INITIAL FARE

  • Kazakovtsev, Lev A.;Stanimirovic, Predrag S.
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.157-172
    • /
    • 2015
  • We introduce a non-Euclidean metric for transportation systems with a defined minimum transportation cost (initial fare) and investigate the continuous single-facility Weber location problem based on this metric. The proposed algorithm uses the results for solving the Weber problem with Euclidean metric by Weiszfeld procedure as the initial point for a special local search procedure. The results of local search are then checked for optimality by calculating directional derivative of modified objective functions in finite number of directions. If the local search result is not optimal then algorithm solves constrained Weber problems with Euclidean metric to obtain the final result. An illustrative example is presented.

Hybrid Genetic Algorithm for Classifier Ensemble Selection (분류기 앙상블 선택을 위한 혼합 유전 알고리즘)

  • Kim, Young-Won;Oh, Il-Seok
    • The KIPS Transactions:PartB
    • /
    • v.14B no.5
    • /
    • pp.369-376
    • /
    • 2007
  • This paper proposes a hybrid genetic algorithm(HGA) for the classifier ensemble selection. HGA is added a local search operation for increasing the fine-turning of local area. This paper apply hybrid and simple genetic algorithms(SGA) to the classifier ensemble selection problem in order to show the superiority of HGA. And this paper propose two methods(SSO: Sequential Search Operations, CSO: Combinational Search Operations) of local search operation of hybrid genetic algorithm. Experimental results show that the HGA has better searching capability than SGA. The experiments show that the CSO considering the correlation among classifiers is better than the SSO.