• Title/Summary/Keyword: Local pressure

Search Result 1,302, Processing Time 0.025 seconds

A Bonding Surface Behavior of Bi-metal Bar through Hydrostatic Extrusion (이중복합봉 정수압 압출시 접합면 거동에 관한 연구)

  • Park, Hun-Jae;Na, Gyeong-Hwan;Jo, Nam-Seon;Lee, Yong-Sin
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.66-71
    • /
    • 1998
  • The present study is concerned with the hydrostatic extrusion process of copper-clad aluminium bar to investigate the bonding conditions as well as the basic flow characteristics. Considering the bonding mechanism of bi-metal contact surface as cold pressure welding the normal pressure and the contact surface expansion are selected as process parameters governing the bonding conditions, in this study the critical normal pressure required for the local extrusion-the protrusion of virgin surfaces by the surface expansion at the interface-is obtained using a slip line method and is then used as a criteron for the bonding. A rigid plastic finite element method is used to analyze the steady state extrusion process. The interface profile of bi-metal rod is predicted by tracking the paths of two particles adja-process. The interface profile of bi-metal rod is predicted by tracking the paths of two particles adja-cent to interface surface. The contact surface area ration and the normal pressure along the interface are calculated and compared to the critical normal pressure to check bonding. It is found that the model predictions are generally in good agreement with the experimental observations. The compar-isons of the extrusion pressure and interface profile by the finite element with those by experi-ments are also given.

  • PDF

The study of stability exercise using pressure biofeedback unit for low back pain (요통에서의 pressure biofeedback unit(stabilizer)를 사용한 안정화 운동)

  • Kim, Gook-Joo;Kong, Kwan-Woo;Kwon, Sun-Oh;Jang, Yong-Geun;Hwang, Hee-Jun;Park, Jun-Ki
    • Journal of Korean Physical Therapy Science
    • /
    • v.19 no.2
    • /
    • pp.63-71
    • /
    • 2012
  • Purpose : This study aimed to acquire a basic knowledge about lumbar stability and inquire into exercise approach of pressure biofeedback unit for lumbar stability. Methods : This study was composed with reviewed theory of lumbar stability and several books and articles for exercise using pressure biofeedback unit. Results : The stability of lumbar should work symmetrical with passive, active, control subsystem in neutral zone, and local muscles should be using for stability. Especially, selective using of transverse abdominis work for lumbar stability importantly. The control of using pressure biofeedback unit may important not only examination but treatment. Conclusion : The stability of lumbar need co-contraction of specific local muscle and training for timing as well as using pressure biofeedback unit for accurate control may use for examination and therapedic approach.

  • PDF

Damage Behavior of Elbow Pipe with Inner or Outer Local Wall Thinning under Internal Pressure (내압을 받는 내/외부 국부 감육 곡관의 파손거동)

  • Kim, Soo-Young;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.66-73
    • /
    • 2014
  • This study was considered to occur the local wall thinning at elbow which is flowing the steam and high-pressure water of high-temperature. The angle of elbow is ${\Theta}=45^{\circ}$ and $67.545^{\circ}$. The damage behaviors of inner or outer wall thinning elbow under internal pressure were calculated by FEA(finite element analysis). We compared the simulated results by FEA with experimental data. The FEA results are as follows: In the FEA results of three types of wall thinning ratio, the circumferential and longitudinal stresses show the similar values regardless of the angle of elbow, respectively. The circumferential strain was greater at elbow of small angle, but the longitudinal strain was nearly same. The FEM stress of outer wall thinning elbow was slightly higher than that of the inner wall thinning elbow, and strain was also slightly higher. In the experiments, the circumferential strain was increased with the increase in the internal pressure, and increased rapidly on about 0.2% of strain. The longitudinal strain was small. The strain at break was much smaller than 0.2%. In the relation between pressure and eroded ratio, the criteria that can be used safely under operating pressure and design pressure were obtained. The results of FEA were in relatively good agreement with those of the experiment.

Preliminary Study for the Development of Optimum Fuel Contact Conductance Model (최적 핵연료 접촉 열전도도 모델 개발을 위한 예비 연구)

  • Yang, Yong-Sik;Shin, Chang-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2488-2493
    • /
    • 2007
  • A gap conductance is very important factor which can affect nuclear fuel temperature. Especially, in case of an annular fuel, a gap conductance effect can lead an unexpected heat split phenomena which is caused by a large difference of an inner and outer gap conductance. The gap conductance mechanism is very complicated behavior due to the its strong dependency on microscopic factors such as a contact surface roughness, local contact pressure and local temperature. In this paper, for the decision of test temperature and pressure range, a procedure and calculation results of in-reactor fuel temperature and pressure analysis are summarized which can be applied to test equipment design and determination of test matrix. Based upon analysis results, it is concluded that the minimum and maximum test temperature are $300^{\circ}C$ and $530^{\circ}C$ respectively, and the maximum pellet/cladding interfacial contact pressure should be observed up to 45MPa.

  • PDF

Heat Transfer Analysis in the Vacuum Carburizing Furnace (진공 침탄로 내의 전열 해석)

  • Lee, In-Sub;Ryou, Hong-Sun;Kim, Won-Bae;Yang, Je-Bok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.877-882
    • /
    • 2003
  • The main objective of the present study is to analyze the heat transfer characteristics in the vacuum carburizing furnace. Local temperatures are measured at different locations in the self-fabricated furnace for various operating conditions using K-type thermocouples. In addition, the present study simulates the fluid flows and heat transfer in the vacuum carburizing furnace using a commercial package (Fluent V. 6.0), and compares the predictions of local temperatures with experimental data. The temperature and flow fields are predicted. It is found that the time taken for reaching the steady-state temperature under the vacuum pressure is shorter than that under the normal pressure condition. It means that the carburizing furnace under vacuum pressure condition is capable of saving the required energy more efficiently than the furnace under the normal pressure condition. Furthermore, the temperature variations predicted by the numerical simulations are in good agreement with experimental data.

Modeling of Nozzle Flow Inside a Y-JET Twin-Fluid Atomizer (Y-JET 2-유체 분무노즐 내부유동의 모델링)

  • In, Wang-Kee;Lee, Sang-Yong;Song, Si-Hong
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1841-1850
    • /
    • 1993
  • A simplified one-dimensional analysis has been performed to predict the local pressure distributions in Y-Jet twin-fluid atomizers. Fluid compressibility was considered both in the gas(air) and two-phase(mixing) ports. The annular-mist flow model was adopted to analyze the flow in the mixing port. A series of experiments also has been performed; the results show that the air flow rate increases and the liquid flow rate decreases with the increase of the air injection pressure and/or with the decrease of the liquid injection pressure. From the measured injection pressures and flow rates, the appropriate constants for the correlations of the pressure loss coefficients and the rate of drop entrainment were decided. The local pressures inside the nozzle by prediction reasonably agree with those by the experiments.

Propagation Speed Characteristics of Premixed Methane-Air Flame in a Combustion Chamber with Model of Engine Cylinder (엔진실린더 모형 연소실내의 메탄-공기 예혼합기의 화염전파속도 특성)

  • 전충환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.225-231
    • /
    • 1998
  • Flame propagation speed characteristics of methante-air mixtures were experimentally investigated in combustion chamber modelled engine. Flame propagation process was known as a funtion of equivalence ratio initial pressure and initial temperature. Ion probe and schlieren photograph were applied to measure the local flame speed and flame radius in quiescent mixtures. Pressure was also measured to make sure of the reproducibility and to apply combustion analysis. Burning velocity was calculated from the flame propagation speed and combustion analysis. Flames were developed faster with higher initial pressure and initial temperature but showed maximum propagation speed at equivalence ratio 1.1 regardless of initial pressure and temperature. Local flame speed was maximum values at near midpoint between center and wall.

  • PDF

A study on the Relations Between Fracture Strain and Fracture Resistance Curve of nuclear Pressure Vessel Steel (압력용기강의 파괴저항곡선의 파괴변형률에 관한 연구)

  • 임만배
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.44-51
    • /
    • 2000
  • Safety and integrity are required for reactor pressure vessels because they are operated in high temperature. There are single specimen method multiple specimen method and load ratio analysis method which used as evaluation of safety and integrity for reactor pressure vessels. In this study the fracture resistance curve(J-R curve) elastic-plastic fracture toughness($J_{IC}$) and material tearing modulus ($T_{mat}$) of SA 508 class 3 alloy steel used as reactor pressure vessel steel are measured and evaluated at room temperature 20$0^{\circ}C$ and 30$0^{\circ}C$ according to unloading compliance method and load ration analysis method. And then the comparison with experimental $J_{IC}$ and theoretical$J_{IC}$ by local fracture strain is managed.

  • PDF

A Development of an Insole Type Local Shear Measurement Transducer and Measurements of Local Plantar Shear Force During Gait (인솔형 국부 전단센서의 개발 및 보행 시 발바닥의 국부 전단력 측정)

  • Jeong Im Sook;Ahn Seung Chan;Yi Jin Bok;Kim Han Sung;Kim Young Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.213-221
    • /
    • 2005
  • An insole type local shear force measurement system was developed and local shear stresses in the foot were measured during level walking. The shear force transducer based on the magneto-resistive principle, was a rigid 3-layer circular disc. Sensor calibrations with a specially designed calibration device showed that it provided relatively linear sensor outputs. Shear transducers were mounted on the locations of four metatarsal heads and heel in the insole. Sensor outputs were amplified, decorded in the bluetooth transmission part and then transferred to PC. In order to evaluate the developed system, both shear and plantar pressure measurements, synchronized with the three-dimensional motion analysis system, were performed on twelve young healthy male subjects, walking at their comfortable speeds. The maximum peak pressure during gait was 5.00kPa/B.W at the heel. The time when large local shear stresses were acted correlated well with the time of fast COP movements. The anteroposterior shear was dominant near the COP trajectory, but the mediolateral shear was noted away from the COP trajectory. The vector sum of shear stresses revealed a strong correlation with COP movement velocity. The present study will be helpful to select the material and to design of foot orthoses and orthopedic shoes for diabetic neuropathy or Hansen disease.

Ownership of Long-Term Care Facility and Incidence of Pressure Ulcers among Republic of Korea

  • Chun, Sung-Youn;Park, Hyeki;Kim, Woorim;Joo, Yeong-Jun;Lee, Tae-Hoon;Park, Eun-Cheol
    • Health Policy and Management
    • /
    • v.30 no.4
    • /
    • pp.522-530
    • /
    • 2020
  • Background: In 2008, Korea implemented a new type of social insurance known as "long-term care insurance". We examined the association between ownership of long-term care facilities and the incidence of pressure ulcers after the implementation of "long-term care insurance". This study is a population-based retrospective cohort study from 2006 to 2013. Methods: We used medical claims data from the Korean National Health Insurance Corporate Elderly Cohort Database from 2006 to 2013. These data comprise a nationally representative sample. To avoid confounders, only patients admitted to one long-term care facility and who stayed for >70% of the follow-up time were included; as a result, 3,107 individuals were enrolled. The main independent variable was the operating entity of the long-term care facility (local government, corporate bodies, and private for-profit owners), and the dependent variable was the 1-year incidence of pressure-ulcers. Survival analysis (Cox proportional hazard model) was used as an analysis method. Results: Compared to patients admitted to local government long-term care facilities, patients admitted to private long-term care facilities had a significantly higher 1-year risk of pressure ulcers (hazard ratio [HR], 1.94; 95% confidence interval [CI], 1.29-2.91); the risk was especially high among patients who were cognitively dependent (HR, 2.34; 95% CI, 1.25-4.37). Conclusion: Patients admitted to private for-profit long-term care facilities were more likely to have pressure ulcers compared to those in local government and corporate body long-term care facilities. Appropriate assessment tools and publicly available information, as well as more restricted legal requirements, are needed to improve the care quality and outcomes of patients in long-term care facilities.