• Title/Summary/Keyword: Local optimization

Search Result 917, Processing Time 0.024 seconds

Route Optimization Using Correspondent Information handover on Proxy Mobile IPv6 (Proxy Mobile IPv6에서 Correspondent Information Route Optimization 기법의 핸드오버)

  • Choi, Young-Hyun;Chung, Tai-Myoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.641-644
    • /
    • 2010
  • Proxy Mobile IPv6에서는 같은 Local Mobility Anchor 내의 다른 Mobile Access Gateway에 있는 Mobile Node 들의 패킷 전송에 있어서 발생하는 삼각 라우팅 문제는 여전히 존재한다. 이 문제점을 해결하기 위해 인터넷 드래프트 Liebsch와 Dutta에서 제안된 두 가지 Route Optimization 기법의 동작과정을 알아보고, 상호 데이터 전송 상황에서 더 나은 성능을 제공하는 Correspondent Route Optimization 기법을 제안한다. 통신을 맺고 있던 Mobile Node가 Local Mobility Anchor 내 다른 Mobile Access Gateway의 범위로 이동할 경우 발생하는 핸드오버 상황에서 Correspondent Route Optimization 기법을 사용하여 signaling cost를 줄이는 방법을 제안한다. 제안한 Route Optimization 기법은 Correspondent Flag를 추가하여 Mobile Access Gateway 간 Corresponding Binding을 완료하여, Route Optimization을 설정한다. 제안한 Correspondent Route Optimization 기법은 기존의 기법보다 상호 데이터 전송 상황에서 Route Optimization에 필요한 메시지 수가 적기 때문에 시그널링 비용이 감소한다.

The Strategies for Exploring Various Regions and Recognizing Local Minimum of Particle Swarm Optimization (PSO의 다양한 영역 탐색과 지역적 미니멈 인식을 위한 전략)

  • Lee, Young-Ah;Kim, Tack-Hun;Yang, Sung-Bong
    • The KIPS Transactions:PartB
    • /
    • v.16B no.4
    • /
    • pp.319-326
    • /
    • 2009
  • PSO(Particle Swarm Optimization) is an optimization algorithm in which simple particles search an optimal solution using shared information acquired through their own experiences. PSO applications are so numerous and diverse. Lots of researches have been made mainly on the parameter settings, topology, particle's movement in order to achieve fast convergence to proper regions of search space for optimization. In standard PSO, since each particle uses only information of its and best neighbor, swarm does not explore diverse regions and intended to premature to local optima. In this paper, we propose a new particle's movement strategy in order to explore diverse regions of search space. The strategy is that each particle moves according to relative weights of several better neighbors. The strategy of exploring diverse regions is effective and produces less local optimizations and accelerating of the optimization speed and higher success rates than standard PSO. Also, in order to raise success rates, we propose a strategy for checking whether swarm falls into local optimum. The new PSO algorithm with these two strategies shows the improvement in the search speed and success rate in the test of benchmark functions.

Local-step Optimization in Online Update Learning of Multilayer Perceptrons (다충신경망을 위한 온라인방식 학습의 개별학습단계 최적화 방법)

  • Tae-Seung, Lee;Ho-Jin, Choi
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.700-702
    • /
    • 2004
  • A local-step optimization method is proposed to supplement the global-step optimization methods which adopt online update mode of internal weights and error energy as stop criterion in learning of multilayer perceptrons (MLPs). This optimization method is applied to the standard online error backpropagation(EBP) and the performance is evaluated for a speaker verification system.

  • PDF

The Variable Amplitude Coefficient Fireworks Algorithm with Uniform Local Search Operator

  • Li, Lixian;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.21-28
    • /
    • 2020
  • Fireworks Algorithm (FWA) is a relatively novel swarm-based metaheuristic algorithm for global optimization. To solve the low-efficient local searching problem and convergence of the FWA, this paper presents a Variable Amplitude Coefficient Fireworks Algorithm with Uniform Local Search Operator (namely VACUFWA). Firstly, the explosive amplitude is used to adjust improving the convergence speed dynamically. Secondly, Uniform Local Search (ULS) enhances exploitation capability of the FWA. Finally, the ULS and Variable Amplitude Coefficient operator are used in the VACUFWA. The comprehensive experiment carried out on 13 benchmark functions. Its results indicate that the performance of VACUFWA is significantly improved compared with the FWA, Differential Evolution, and Particle Swarm Optimization.

An Enhanced Genetic Algorithm for Global and Local Optimization Search (전역 및 국소 최적화탐색을 위한 향상된 유전 알고리듬의 제안)

  • Kim, Young-Chan;Yang, Bo-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1008-1015
    • /
    • 2002
  • This paper proposes a combinatorial method to compute the global and local solutions of optimization problem. The present hybrid algorithm is the synthesis of a genetic algorithm and a local concentrate search algorithm (simplex method). The hybrid algorithm is not only faster than the standard genetic algorithm, but also gives a more accurate solution. In addition, this algorithm can find both the global and local optimum solutions. An optimization result is presented to demonstrate that the proposed approach successfully focuses on the advantages of global and local searches. Three numerical examples are also presented in this paper to compare with conventional methods.

The Road Alignment Optimization Modelling of Intersection Based on GIS (GIS를 이용하여 교차로를 고려한 도로선형 최적화 모델링)

  • 김동하;이준석;강인준
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.341-345
    • /
    • 2003
  • This study develops modeling processes for alignment optimization considering characteristics of intersections using genetic algorithms and GIS for road alignment optimization. Since existing highway alignment optimization models have neglected the characteristics of intersections, they have shown serious weaknesses for real applications. In this paper, intersection costs include earthwork, right-of-way, pavement, accident, delay and fuel consumption costs that are sensitive and dominating to alignments. Also, local optimization of intersections for saving good alignment alternatives is developed and embedded. A highway alignment is described by parametric representation in space and vector manipulation is used to find the coordinates of intersections and other interesting points. The developed intersection cost estimation model is sufficiently precise for estimating intersection costs and eventually enhancing the performance of highway alignment optimization models. Also, local optimization of intersections can be used for improving search flexibility, thus allowing more effective intersections. It also provides a basis for extending the alignment optimization from single highways to networks. The presented two artificial examples show that the total intersection costs are substantial and sensitive to highway alignments.

  • PDF

A Novel Hybrid Intelligence Algorithm for Solving Combinatorial Optimization Problems

  • Deng, Wu;Chen, Han;Li, He
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.4
    • /
    • pp.199-206
    • /
    • 2014
  • The ant colony optimization (ACO) algorithm is a new heuristic algorithm that offers good robustness and searching ability. With in-depth exploration, the ACO algorithm exhibits slow convergence speed, and yields local optimization solutions. Based on analysis of the ACO algorithm and the genetic algorithm, we propose a novel hybrid genetic ant colony optimization (NHGAO) algorithm that integrates multi-population strategy, collaborative strategy, genetic strategy, and ant colony strategy, to avoid the premature phenomenon, dynamically balance the global search ability and local search ability, and accelerate the convergence speed. We select the traveling salesman problem to demonstrate the validity and feasibility of the NHGAO algorithm for solving complex optimization problems. The simulation experiment results show that the proposed NHGAO algorithm can obtain the global optimal solution, achieve self-adaptive control parameters, and avoid the phenomena of stagnation and prematurity.

Improved Automatic Lipreading by Stochastic Optimization of Hidden Markov Models (은닉 마르코프 모델의 확률적 최적화를 통한 자동 독순의 성능 향상)

  • Lee, Jong-Seok;Park, Cheol-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.523-530
    • /
    • 2007
  • This paper proposes a new stochastic optimization algorithm for hidden Markov models (HMMs) used as a recognizer of automatic lipreading. The proposed method combines a global stochastic optimization method, the simulated annealing technique, and the local optimization method, which produces fast convergence and good solution quality. We mathematically show that the proposed algorithm converges to the global optimum. Experimental results show that training HMMs by the method yields better lipreading performance compared to the conventional training methods based on local optimization.

A Hybrid of Evolutionary Search and Local Heuristic Search for Combinatorial Optimization Problems

  • Park, Lae-Jeong;Park, Cheol-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.6-12
    • /
    • 2001
  • Evolutionary algorithms(EAs) have been successfully applied to many combinatorial optimization problems of various engineering fields. Recently, some comparative studies of EAs with other stochastic search algorithms have, however, shown that they are similar to, or even are not comparable to other heuristic search. In this paper, a new hybrid evolutionary algorithm utilizing a new local heuristic search, for combinatorial optimization problems, is presented. The new intelligent local heuristic search is described, and the behavior of the hybrid search algorithm is investigated on two well-known problems: traveling salesman problems (TSPs), and quadratic assignment problems(QAPs). The results indicate that the proposed hybrid is able to produce solutions of high quality compared with some of evolutionary and simulated annealing.

  • PDF

Sampling-Based Sensitivity Approach to Electromagnetic Designs Utilizing Surrogate Models Combined with a Local Window

  • Choi, Nak-Sun;Kim, Dong-Wook;Choi, K.K.;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.74-79
    • /
    • 2013
  • This paper proposes a sampling-based optimization method for electromagnetic design problems, where design sensitivities are obtained from the elaborate surrogate models based on the universal Kriging method and a local window concept. After inserting additional sequential samples to satisfy the certain convergence criterion, the elaborate surrogate model for each true performance function is generated within a relatively small area, called a hyper-cubic local window, with the center of a nominal design. From Jacobian matrices of the local models, the accurate design sensitivity values at the design point of interest are extracted, and so they make it possible to use deterministic search algorithms for fast search of an optimum in design space. The proposed method is applied to a mathematical problem and a loudspeaker design with constraint functions and is compared with the sensitivity-based optimization adopting the finite difference method.