• Title/Summary/Keyword: Local edge pattern

Search Result 44, Processing Time 0.019 seconds

Improved Nonlocal Means Algorithm for Image Denoising (영상 잡음 제거를 위해 개선된 비지역적 평균 알고리즘)

  • Park, Sang-Wook;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.46-53
    • /
    • 2011
  • Nonlocal means denoising algorithm is one of the most widely used denoising algorithm. Because it performs well, and the theoretic idea is intuitive and simple. However the conventional nonlocal means algorithm has still some problems such as noise remaining in the denoised flat region and blurring artifacts in the denoised edge and pattern region. Thus many improved algorithms based on nonlocal means have been proposed. In this paper, we proposed new improved nonlocal means denoising algorithm by weight update through weights sorting and newly defined threshold. Updated weights can make weights more refined and definite, and denoising is possible without that artifacts. Experimental results including comparisons with conventional algorithms for various noise levels and test images show the proposed algorithm has a good performance in both visual and quantitative criteria.

Numerical Simulation of Unsteady Cavitation in a High-speed Water Jet

  • Peng, Guoyi;Okada, Kunihiro;Yang, Congxin;Oguma, Yasuyuki;Shimizu, Seiji
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.66-74
    • /
    • 2016
  • Concerning the numerical simulation of high-speed water jet with intensive cavitation this paper presents a practical compressible mixture flow method by coupling a simplified estimation of bubble cavitation and a compressible mixture flow computation. The mean flow of two-phase mixture is calculated by URANS for compressible fluid. The intensity of cavitation in a local field is evaluated by the volume fraction of gas phase varying with the mean flow, and the effect of cavitation on the flow turbulence is considered by applying a density correction to the evaluation of eddy viscosity. High-speed submerged water jets issuing from a sheathed sharp-edge orifice nozzle are treated when the cavitation number, ${\sigma}=0.1$, and the computation result is compared with experimental data The result reveals that cavitation occurs initially at the entrance of orifice and bubble cloud develops gradually while flowing downstream along the shear layer. Developed bubble cloud breaks up and then sheds downstream periodically near the sheath exit. The pattern of cavitation cloud shedding evaluated by simulation agrees experimental one, and the possibility to capture the unsteadily shedding of cavitation clouds is demonstrated. The decay of core velocity in cavitating jet is delayed greatly compared to that in no-activation jet, and the effect of the nozzle sheath is demonstrated.

Automated Detecting and Tracing for Plagiarized Programs using Gumbel Distribution Model (굼벨 분포 모델을 이용한 표절 프로그램 자동 탐색 및 추적)

  • Ji, Jeong-Hoon;Woo, Gyun;Cho, Hwan-Gue
    • The KIPS Transactions:PartA
    • /
    • v.16A no.6
    • /
    • pp.453-462
    • /
    • 2009
  • Studies on software plagiarism detection, prevention and judgement have become widespread due to the growing of interest and importance for the protection and authentication of software intellectual property. Many previous studies focused on comparing all pairs of submitted codes by using attribute counting, token pattern, program parse tree, and similarity measuring algorithm. It is important to provide a clear-cut model for distinguishing plagiarism and collaboration. This paper proposes a source code clustering algorithm using a probability model on extreme value distribution. First, we propose an asymmetric distance measure pdist($P_a$, $P_b$) to measure the similarity of $P_a$ and $P_b$ Then, we construct the Plagiarism Direction Graph (PDG) for a given program set using pdist($P_a$, $P_b$) as edge weights. And, we transform the PDG into a Gumbel Distance Graph (GDG) model, since we found that the pdist($P_a$, $P_b$) score distribution is similar to a well-known Gumbel distribution. Second, we newly define pseudo-plagiarism which is a sort of virtual plagiarism forced by a very strong functional requirement in the specification. We conducted experiments with 18 groups of programs (more than 700 source codes) collected from the ICPC (International Collegiate Programming Contest) and KOI (Korean Olympiad for Informatics) programming contests. The experiments showed that most plagiarized codes could be detected with high sensitivity and that our algorithm successfully separated real plagiarism from pseudo plagiarism.

Effect of buoyancy and thermocapillarity on the melt motion and mass transfer for different aspect ratio of flow field in magnetic Czochralski crystal growth of silicon (Cusp 자장이 걸려있는 초크랄스키 실리콘 단결정성장에서 유동장의 종횡비에 따라 부력과 열모세관 현상이 용융물질의 유동과 물질전달에 미치는 영향)

  • 김창녕
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.177-184
    • /
    • 2000
  • The effect of the buyancy and thermocapillarity for differnent aspect ratio of flow field on melt motion and mass transfer has been numerically investigated in magnetic Czochralski crystal growth of silicon. During the process of crystal growth, the melt depth of crucible reduces so the aspect ratio of flow field also reduces. Therefore the shape of magnetic field of the flow field changes and the flow pattern also changes significantly. Together with the melt flow which forms the Marangoni convection (or thermocapillary flow) that comes from the inside the flow field, a flow circulation is observed near the corner close both to the crucible wall and the free surface. Due to this circulation, buoyancy effect has been turned out to be local rather than global. As the aspect ratio decreases, the radial component of the magnetic field prevails compared with the axial component in the flow field. Under the influence of this magnetic field, the melt flow and the temperature distribution in a meridional plane tend to depend on the radial position. As the aspect ratio decreases, the temperature gradient near the edge of the crystal decreases yielding smaller thermocapillarity, and the oxygen concentration near the crystal and the oxygen incorporation rate also decrease.

  • PDF