• Title/Summary/Keyword: Local Submap

Search Result 2, Processing Time 0.018 seconds

A Simulation for Robust SLAM to the Error of Heading in Towing Tank (Unscented Kalman Filter을 이용한 Simultaneous Localization and Mapping 기법 적용)

  • Hwang, A-Rom;Seong, Woo-Jae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.339-346
    • /
    • 2006
  • Increased usage of autonomous underwater vehicle (AUV) has led to the development of alternative navigational methods that do not employ the acoustic beacons and dead reckoning sensors. This paper describes a simultaneous localization and mapping (SLAM) scheme that uses range sonars mounted on a small AUV. The SLAM is one of such alternative navigation methods for measuring the environment that the vehicle is passing through and providing relative position of AUV by processing the data from sonar measurements. A technique for SLAM algorithm which uses several ranging sonars is presented. This technique utilizes an unscented Kalman filter to estimate the locations of the AUV and objects. In order for the algorithm to work efficiently, the nearest neighbor standard filter is introduced as the algorithm of data association in the SLAM for associating the stored targets the sonar returns at each time step. The proposed SLAM algorithm is tested by simulations under various conditions. The results of the simulation show that the proposed SLAM algorithm is capable of estimating the position of the AUV and the object and demonstrates that the algorithm will perform well in various environments.

  • PDF

Experiments of Unmanned Underwater Vehicle's 3 Degrees of Freedom Motion Applied the SLAM based on the Unscented Kalman Filter (무인 잠수정 3자유도 운동 실험에 대한 무향 칼만 필터 기반 SLAM기법 적용)

  • Hwang, A-Rom;Seong, Woo-Jae;Jun, Bong-Huan;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.58-68
    • /
    • 2009
  • The increased use of unmanned underwater vehicles (UUV) has led to the development of alternative navigational methods that do not employ acoustic beacons and dead reckoning sensors. This paper describes a simultaneous localization and mapping (SLAM) scheme that uses range sonars mounted on a small UUV. A SLAM scheme is an alternative navigation method for measuring the environment through which the vehicle is passing and providing the relative position of the UUV. A technique for a SLAM algorithm that uses several ranging sonars is presented. This technique utilizes an unscented Kalman filter to estimate the locations of the UUV and surrounding objects. In order to work efficiently, the nearest neighbor standard filter is introduced as the data association algorithm in the SLAM for associating the stored targets returned by the sonar at each time step. The proposed SLAM algorithm was tested by experiments under various three degrees of freedom motion conditions. The results of these experiments showed that the proposed SLAM algorithm was capable of estimating the position of the UUV and the surrounding objects and demonstrated that the algorithm will perform well in various environments.