• Title/Summary/Keyword: Local Stress Analysis

Search Result 600, Processing Time 0.024 seconds

Ratcheting analysis of joined conical cylindrical shells

  • Singh, Jaskaran;Patel, B.P.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.913-929
    • /
    • 2015
  • The ratcheting and strain cyclic behaviour of joined conical-cylindrical shells under uniaxial strain controlled, uniaxial and multiaxial stress controlled cyclic loading are investigated in the paper. The elasto-plastic deformation of the structure is simulated using Chaboche non-linear kinematic hardening model in finite element package ANSYS 13.0. The stress-strain response near the joint of conical and cylindrical shell portions is discussed in detail. The effects of strain amplitude, mean stress, stress amplitude and temperature on ratcheting are investigated. Under strain symmetric cycling, the stress amplitude increases with the increase in imposed strain amplitude. Under imposed uniaxial/multiaxial stress cycling, ratcheting strain increases with the increasing mean/amplitude values of stress and temperature. The abrupt change in geometry at the joint results in local plastic deformation inducing large strain variations in the vicinity of the joint. The forcing frequency corresponding to peak axial ratcheting strain amplitude is significantly smaller than the frequency of first linear elastic axial vibration mode. The strains predicted from quasi static analysis are significantly smaller as compared to the peak strains from dynamic analysis.

Iterative global-local approach to consider the local effects in dynamic analysis of beams

  • Erkmen, R. Emre;Afnani, Ashkan
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.501-522
    • /
    • 2017
  • This paper introduces a numerical procedure to incorporate elasto-plastic local deformation effects in the dynamic analysis of beams. The appealing feature is that simple beam type finite elements can be used for the global model which needs not to be altered by the localized elasto-plastic deformations. An overlapping local sophisticated 2D membrane model replaces the internal forces of the beam elements in the predefined region where the localized deformations take place. An iterative coupling technique is used to perform this replacement. Comparisons with full membrane analysis are provided in order to illustrate the accuracy and efficiency of the method developed herein. In this study, the membrane formulation is able to capture the elasto-plastic material behaviour based on the von Misses yield criterion and the associated flow rule for plane stress. The Newmark time integration method is adopted for the step-by-step dynamic analysis.

Healthcare Work and Organizational Interventions to Prevent Work-related Stress in Brindisi, Italy

  • d'Ettorre, Gabriele;Greco, Mariarita
    • Safety and Health at Work
    • /
    • v.6 no.1
    • /
    • pp.35-38
    • /
    • 2015
  • Background: Organizational changes that involve healthcare hospital departments and care services of health districts, and ongoing technological innovations and developments in society increasingly expose healthcare workers (HCWs) to work-related stress (WRS). Minimizing occupational exposure to stress requires effective risk stress assessment and management programs. Methods: The authors conducted an integrated analysis of stress sentinel indicators, an integrated analysis of objective stress factors of occupational context and content areas, and an integrated analysis between nurses and physicians of hospital departments and care services of health districts in accordance with a multidimensional validated tool developed in Italy by the National Network for the Prevention of Work-Related Psychosocial Disorders. The purpose of this retrospective observational study was to detect and analyze in different work settings the level of WRS resulting from organizational changes implemented by hospital healthcare departments and care services of health districts in a sample of their employees. Results: The findings of the study showed that hospital HCWs seemed to incur a medium level risk of WRS that was principally the result of work context factors. The implementation of improvement interventions focused on team development, safety training programs, and adopting an ethics code for HCWs, and it effectively and significantly reduced the level of WRS risk in the workplace. Conclusion: In this study HCW resulted to be exposed to occupational stress factors susceptible to reduction. Stress management programs aimed to improve work context factors associated with occupational stress are required to minimize the impact of WRS on workers.

Stress Indices of Hollow Circular Cross Section Welded Attachments on Piping Elbows with the Extended Parameters Range (매개변수 적용범위를 확장한 배관 곡관부에 용접 부착된 원형관 이음부의 이차응력지수)

  • Lee, Kun-Suk;Moon, Seong-Jae
    • Plant Journal
    • /
    • v.15 no.4
    • /
    • pp.43-51
    • /
    • 2019
  • The stress concentration of the integral welded attachments (IWA) often used to support piping system has been a big issue because it induces local stresses in piping. The method to evaluate local stresses associated with attachments on elbows has been suggested in EPRI TR-107453. However, there are limitations regarding specific parameters range in order to use correlation equation. In this paper, parametric study based on piping elbow size and attachment dimension was performed utilizing finite element analysis (FEA) to evaluate the secondary stress indices of hollow circular cross section welded attachments on piping elbows with the extended parameters range. The results of the FEA were used to develop correlation formulas for calculating secondary stress indices. The empirical equations in this study are suggested as an alternative evaluation method of EPRI TR-107453 by extending parameters range.

Stress Index Development for Piping with Trunnion Attachment Under Pressure and Moment Loadings

  • Lee, Dae-hee;Kim, Jong-Min;Park, Sung-ho
    • Nuclear Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.310-319
    • /
    • 1997
  • A finite element analysis of a trunnion pipe anchor is presented. The structure is analyzed for the case of internal pressure and moment loadings. The stress results are categorized into the average (membrane) stress, the linearly varying (bending) stress and the peak stress through the thickness. The resulting stresses are interpreted per Section III of the ASME Boiler and Pressure Vessel Code from which the Primary(B$_1$), Secondary(C$_1$) and Peak(K$_1$) stress indices for pressure, the Primary (B$_2$), Secondary(C$_2$) and Peak(K$_2$) stress indices for moment are developed. Based on the comparison between stress value by stress indices derived in this paper and stress value represented by the ASME Code Case N-391-1, the empirical equations for stress indices are effectively used in the piping stress analysis. Therefore, the use of empirical equations can simplify the procedure of evaluating the local stress in the piping design stage.

  • PDF

Stress Properties for Anchorage Zone of Cable Stayed Bridge Prestress Concrete (프리스트레스트 콘크리트 사장교 정착부의 응력특성)

  • 조병완;변윤주;최준혁;태기호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.531-536
    • /
    • 2002
  • The design of anchorage zone in prestressed concrete cable stayed bridges is very important area due to the more accurate analysis is needed to estimate the behavior. In the study, since the cable anchorage zone in the prestressed concrete cable-stayed bridge is subject to a large amount of concentrated tendon forces, it shows very complicated stress distributions and causes a serious local cracks. Accordingly, It is necessary to investigate the parameters of affecting the stress distribution, such as the cable inclination, the position of anchor plate, the modeling method and the three dimensional effect. The tensile stress distribution of anchorage zone is compared to the actual design condition by varing the stiffness of spring element in the local modeling and an appropriate position of anchor plate is determined. These results would be elementary data to the stress state of anchorage zone and more efficient design.

  • PDF

Local & Overall Buckling of Cold-Formed Channel Column under Compression at Elevated Temperatures (온도상승에 따른 압축을 받는 냉간성형 C-형강 기둥의 국부 및 전체 좌굴)

  • Baik, Tai-Soon;Kang, Moon-Myung
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.63-72
    • /
    • 2004
  • This paper is developed a computer program to analysis the elastic local and overall buckling stress based on Eurocode 3 Part 1.3 for the flange and web, and Euler equations for columns of cold-formed channel under compression at elevated temperatures. The high temperature stress-strain relationships of steel used this paper are determined according to Eurocode 3 Part 1.2. Critical temperatures and the elastic local buckling stresses of the cold-formed channel columns under compression at elevated temperatures are analysed by the computer program developed in this study. Analysis examples are given to show the applicability of the computer program developed in this study.

  • PDF

The effects of occupational stress on oral health impact profile (OHIP) in local government workers (지방공무원의 직무스트레스가 구강건강 삶의 질에 미치는 영향)

  • Hong, Min-Hee
    • Journal of Korean society of Dental Hygiene
    • /
    • v.12 no.3
    • /
    • pp.471-483
    • /
    • 2012
  • Objectives : This study looked at the relationship between occupational stress and the Oral Health Impact Profile (OHIP), to evaluate the effect of occupational stress-related factors. Methods : Data was obtained from a cross-sectional survey of 260 local officials in Gangwondo. The research comprised three questions relating to subjective oral symptoms, an occupational stress measurement tool and an oral health impact factor which was composed of questions. The data was analysed using t-test, one-way ANOVA, Pearson correlation and path analysis in Amos. Results : Occupational stress had a positive correlation to drinking frequency, Oral symptoms had a negative correlation. And drinking frequency, smoking amount and occupational stress had a positive correlation to oral symptoms. It denoted that drinking frequency, occupational stress and oral symptoms had a negative correlation to OHIP. The path model had an excellent goodness of fit (p=0.07, namely p>0.05). Five 'goodness-of-fit indices' of the model were all above 0.9: GFI=0.987, AGFI=0.952, NFI=0.902, IFI=0.939, CFI=0.934), and its RMSEA was 0.045. Occupational stress and oral symptoms had a firsthand impact on OHIP. In addition, it affected OHIP through the parameters of oral symptoms. Occupational stress exercised a firsthand influence on drinking frequency, drinking frequency exercised a firsthand influence on smoking amount. Smoking amount had a firsthand impact on oral symptoms. Conclusions: Oral health education programs for the development of an improved oral hygiene environment through reduction in drinking and smoking also need to focus on relieving stress by improving workplace culture. In addition, due to good communication is required to reduce occupational stress caused by interpersonal conflict.

Stress Analysis and Sizing for a Glass/Epoxy Composite Wind Turbine Blade (풍력발전기용 대형 복합재 블레이드에 대한 구조 해석 및 사이징에 관한 연구)

  • 이충훈;박진무;홍순곤;박지상;김태욱
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.5-9
    • /
    • 2002
  • This paper presents a method and procedure for stress analysis and sizing in development of structures of a large composite wind turbine blade. Structural requirement of IEC standard was reviewed to set up appropriate analysis method and procedure. Several structural layouts were examined in a viewpoint of a large scale wind turbine blade. For the critical load cases, stress analysis were performed using finite element method. Stacking sequence and thickness of a laminate for each part and location were determined considering stress levels and producibility. Nonlinear geometric analysis was performed to check stability problem due to local buckling of a skin structures.

  • PDF

ON THE TREATMENT OF DUCTILE FRACTURE BY THE LOCAL APPROACH CONCEPT IN CONTINUUM DAMAGE MECHANICS : THEORY AND EXAMPLE

  • Kim, Seoung-Jo;Kim, Jin-Hee;Kim, Wie-Dae
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.31-50
    • /
    • 1996
  • In this paper, a finite element analysis based on the local approach concept to fracture in the continuum damage mechanics is performed to analyze ductile fracture in two dimensional quasi-static state. First an isotropic damage model based on the generalized concept of effective stress is proposed for structural materials in the context of large deformation. In this model, the stiffness degradation is taken as a measure of damage and so, the fracture phenomenon can be explained as the critical deterioration of stiffness at a material point. The modified Riks' continuation technique is used to solve incremental iterative equations. Crack propagation is achieved by removing critically damaged elements. The mesh size sensitivity analysis and the simulation of the well known shearing mode failure in plane strain state are carried out to verify the present formulation. As numerical examples, an edge cracked plate and the specimen with a circular hole under plane stress are taken. Load-displacement curves and successively fractured shapes are shown. From the results, it can be concluded that the proposed model based on the local approach concept in the continuum damage mechanics may be stated as a reasonable tool to explain ductile fracture initiation and crack propagation.